论文标题
在作用中标记的分区:重组,选择,突变等
Labelled partitions in action: recombination, selection, mutation, and more
论文作者
论文摘要
在本文中,我们考虑了重组(无限大)种群的演变和以测量值值的普通微分方程为模型的额外进化力。我们通过对二元性来为该模型的解决方案提供随机表示形式,以对带有Markovian标签的新标记的分区过程。在单交叉的特殊情况下,这导致了递归溶液公式。这扩展了(并统一)关于选择 - 分组方程的先前结果。作为一个具体的例子,我们考虑了选择 - 享受的重组方程。
In this paper, we consider the evolution of an (infinitely large) population under recombination and additional evolutionary forces, modelled by a measure-valued ordinary differential equation. We provide a stochastic representation for the solution of this model via duality to a new labelled partitioning process with Markovian labels. In the special case of single-crossover, this leads to a recursive solution formula. This extends (and unifies) previous results on the selection-recombination equation. As a concrete example, we consider the selection-mutation-recombination equation.