论文标题

Helmholtz方程的CIP-FEM的分散分析

Dispersion Analysis of CIP-FEM for Helmholtz Equation

论文作者

Zhou, Yu, Wu, Haijun

论文摘要

在数值上求解Helmholtz方程时,数值解的精度随着波数$ K $的增加而恶化,称为“污染效应”,这与数值分散剂引起的精确和数值溶液之间的相位差直接相关。在本文中,我们提出了连续内部惩罚有限元方法(CIP-FEM)的分散分析,并得出了$ p^{\ rm th} $ cip-fem tensor产品(cartesian)网格中的罚款参数的明确公式,从而从中降低了相位差异。 $ \ MATHCAL {o} \ big(k(kh)^{2p} \ big)$ to $ \ MATHCAL {O} \ big(k(kh)^{2p+2} \ big)$。广泛的数值测试表明,CIP-FE解决方案的污染误差也通过$ kh $中的两个订单降低,具有相同的惩罚参数。

When solving the Helmholtz equation numerically, the accuracy of numerical solution deteriorates as the wave number $k$ increases, known as `pollution effect' which is directly related to the phase difference between the exact and numerical solutions, caused by the numerical dispersion. In this paper, we propose a dispersion analysis for the continuous interior penalty finite element method (CIP-FEM) and derive an explicit formula of the penalty parameter for the $p^{\rm th}$ order CIP-FEM on tensor product (Cartesian) meshes, with which the phase difference is reduced from $\mathcal{O}\big(k(kh)^{2p}\big)$ to $\mathcal{O}\big(k(kh)^{2p+2}\big)$. Extensive numerical tests show that the pollution error of the CIP-FE solution is also reduced by two orders in $kh$ with the same penalty parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源