论文标题

加权calderón-hardy空间

Weighted Calderón-Hardy spaces

论文作者

Rocha, Pablo

论文摘要

令$ 0 <p \ leq 1 <q <\ infty $和$γ> 0 $。在本说明中,我们讨论了$ \ Mathbb {r}^{n} $,$ \ Mathcal {h}^{p} _ {q,γ}(\ Mathbb {r}^{n},w),w),$ \ Mathbb {r}^{n} $,$ \ mathbb {r}^{n} $上的加权calderón-hardy空间。对于$γ= 2M $,$ m \ in \ Mathbb {n} $,以及$ n(2M + N/Q) 2M}(\ Mathbb {r}^{n},w)$ to $ h^{p}(\ Mathbb {r}^{n},w)$。

Let $0 < p \leq 1 < q < \infty$ and $γ>0$. In this note we discuss the weighted Calderón-Hardy spaces on $\mathbb{R}^{n}$, $\mathcal{H}^{p}_{q, γ}(\mathbb{R}^{n}, w)$. For $γ= 2m$, $m \in \mathbb{N}$, and $n (2m + n/q)^{-1} < p \leq 1$, we show that for certain power weights $w$ the iterated Laplace operator $Δ^{m}$ is a bijective mapping from $\mathcal{H}^{p}_{q, 2m}(\mathbb{R}^{n},w)$ onto $H^{p}(\mathbb{R}^{n}, w)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源