论文标题

从立场到关注:适应命题分析到新任务和领域

From Stance to Concern: Adaptation of Propositional Analysis to New Tasks and Domains

论文作者

Mather, Brodie, Dorr, Bonnie J, Dalton, Adam, de Beaumont, William, Rambow, Owen, Schmer-Galunder, Sonja M.

论文摘要

我们提出了一个广义范式,用于适应命题分析(谓词题材对)对新任务和域。我们利用立场(信念驱动的情绪)与关注(局部问题/背书的局部问题)之间的类比来产生解释性表示。一个关键的贡献是半自动资源构建用于提取域依赖性关注类型(每个领域的人工2-4小时)的组合,以及一个完全自动的程序,用于提取独立于域的道德维度和背书值。审慎的(自动)从命题结构中选择词汇扩张(通过语义相似性)的术语可产生新的道德维度词典,这是在强大的基线词典之外的三个级别的粒度级别。我们根据专家注释者开发了一个基础真理(GT),并将我们的关注检测输出与GT进行比较,以比基线相比,召回率提高了231%,精度仅损失了10%。 F1比基线提高了66%,占人类绩效的97.8%。我们以词汇为基础的方法可以为采用昂贵的人工和模型建设的方法节省大量资金。我们为社区提供新扩大的道德维度/价值词典,注释指南和GT。

We present a generalized paradigm for adaptation of propositional analysis (predicate-argument pairs) to new tasks and domains. We leverage an analogy between stances (belief-driven sentiment) and concerns (topical issues with moral dimensions/endorsements) to produce an explanatory representation. A key contribution is the combination of semi-automatic resource building for extraction of domain-dependent concern types (with 2-4 hours of human labor per domain) and an entirely automatic procedure for extraction of domain-independent moral dimensions and endorsement values. Prudent (automatic) selection of terms from propositional structures for lexical expansion (via semantic similarity) produces new moral dimension lexicons at three levels of granularity beyond a strong baseline lexicon. We develop a ground truth (GT) based on expert annotators and compare our concern detection output to GT, to yield 231% improvement in recall over baseline, with only a 10% loss in precision. F1 yields 66% improvement over baseline and 97.8% of human performance. Our lexically based approach yields large savings over approaches that employ costly human labor and model building. We provide to the community a newly expanded moral dimension/value lexicon, annotation guidelines, and GT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源