论文标题

乳腺癌使用时间变异自动编码器诱导骨骨化预测

Breast Cancer Induced Bone Osteolysis Prediction Using Temporal Variational Auto-Encoders

论文作者

Xiong, Wei, Yeung, Neil, Wang, Shubo, Liao, Haofu, Wang, Liyun, Luo, Jiebo

论文摘要

客观和影响声明。我们对鼠类乳腺癌骨转移的计算机断层扫描(CT)图像进行了深度学习模型,以预测骨骨化预测。鉴于骨CT在以前的时间步骤中进行扫描,该模型结合了从顺序图像中学到的骨癌相互作用并生成未来的CT图像。它预测癌症骨骼骨折的发展的能力可以帮助评估即将发生裂缝的风险,并选择在乳腺癌骨转移中进行适当的治疗。介绍。乳腺癌经常转移到骨骼,导致骨化病变,并导致骨骼相关事件(SRE)(SRE),包括严重的疼痛甚至致命的骨折。尽管当前的成像技术可以检测宏观骨折,但预测骨骼病变的发生和进展仍然是一个挑战。方法。我们采用时间变异自动编码器(T-VAE)模型,该模型利用变异自动编码器和较长的短期记忆网络的组合来预测包含鼠胫骨顺序图像的Micro-CT数据集上的骨骼病变出现。鉴于早期鼠胫骨的CT扫描,我们的模型可以从数据中了解其未来状态的分布。结果。我们针对有关骨病变进展预测任务的其他基于深度学习的预测模型的模型测试。与各种评估指标下的现有模型相比,我们的模型产生的预测更为准确。结论。我们开发了一个深度学习框架,可以准确预测和可视化溶性骨骼病变的进展。它将有助于计划和评估治疗策略,以防止乳腺癌患者的SRE。

Objective and Impact Statement. We adopt a deep learning model for bone osteolysis prediction on computed tomography (CT) images of murine breast cancer bone metastases. Given the bone CT scans at previous time steps, the model incorporates the bone-cancer interactions learned from the sequential images and generates future CT images. Its ability of predicting the development of bone lesions in cancer-invading bones can assist in assessing the risk of impending fractures and choosing proper treatments in breast cancer bone metastasis. Introduction. Breast cancer often metastasizes to bone, causes osteolytic lesions, and results in skeletal related events (SREs) including severe pain and even fatal fractures. Although current imaging techniques can detect macroscopic bone lesions, predicting the occurrence and progression of bone lesions remains a challenge. Methods. We adopt a temporal variational auto-encoder (T-VAE) model that utilizes a combination of variational auto-encoders and long short-term memory networks to predict bone lesion emergence on our micro-CT dataset containing sequential images of murine tibiae. Given the CT scans of murine tibiae at early weeks, our model can learn the distribution of their future states from data. Results. We test our model against other deep learning-based prediction models on the bone lesion progression prediction task. Our model produces much more accurate predictions than existing models under various evaluation metrics. Conclusion. We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions. It will assist in planning and evaluating treatment strategies to prevent SREs in breast cancer patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源