论文标题

基于汉密尔顿 - 雅各比 - 贝尔曼方程的依据,经济动态

On the Fragility of the Basis on the Hamilton-Jacobi-Bellman Equation in Economic Dynamics

论文作者

Hosoya, Yuhki

论文摘要

在本文中,我们提供了一个最佳增长模型的示例,其中在其中存在许多用于汉密尔顿 - 雅各比 - 贝尔曼方程的解决方案,但该值函数无法满足该方程。我们考虑了这种现象的原因,发现缺乏解决原始问题的解决方案至关重要。我们表明,在几种条件下,就有一个且仅当值函数求解汉密尔顿 - 雅各比 - 贝尔曼方程时,就存在解决原始问题的解决方案。此外,在这种情况下,值函数是唯一的无核心解决方案,用于汉密尔顿 - 雅各比 - 贝尔曼方程。我们还表明,如果没有我们的条件,这种独特性结果就无法成立。

In this paper, we provide an example of the optimal growth model in which there exist infinitely many solutions to the Hamilton-Jacobi-Bellman equation but the value function does not satisfy this equation. We consider the cause of this phenomenon, and find that the lack of a solution to the original problem is crucial. We show that under several conditions, there exists a solution to the original problem if and only if the value function solves the Hamilton-Jacobi-Bellman equation. Moreover, in this case, the value function is the unique nondecreasing concave solution to the Hamilton-Jacobi-Bellman equation. We also show that without our conditions, this uniqueness result does not hold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源