论文标题
通过遗传学协方差平滑对平面曲线的弹性完全倾向分析
Elastic Full Procrustes Analysis of Plane Curves via Hermitian Covariance Smoothing
论文作者
论文摘要
确定曲线集合的平均形状并不是一个琐碎的任务,特别是当曲线仅在离散点不规则/稀疏时。我们新提出了(定向)平面曲线形状的弹性全倾向的平均值,该平面曲线的形状被认为是基于平方 - 根 - 效率(SRV)框架的平移,旋转,尺度和重新参数化(翘曲)的参数化曲线等效类别。确定具有复数的真实平面,我们在不规则/稀疏功能数据分析中与协方差估计建立了联系。我们介绍了Hermitian协方差平滑,并展示了如何利用现有协方差估计方法的扩展,以获取(in)弹性完全procrustes的估计器,在稀疏情况下,尚未被现有(内在的)弹性形状均值所涵盖的稀疏情况。为此,我们提供了不同的基础工作结果,这些结果也引起了独立的关注:我们表征了使用复杂表示的旋转不变双变量随机过程的协方差结构(分解),并且我们识别采样方案,可以准确观察到衍生词 / SRV转换稀疏采样曲线。我们在舌头形状和不同现实的模拟设置中的语音研究中演示了该方法的性能,基于手写数据的不同。
Determining the mean shape of a collection of curves is not a trivial task, in particular when curves are only irregularly/sparsely sampled at discrete points. We newly propose an elastic full Procrustes mean of shapes of (oriented) plane curves, which are considered equivalence classes of parameterized curves with respect to translation, rotation, scale, and re-parameterization (warping), based on the square-root-velocity (SRV) framework. Identifying the real plane with the complex numbers, we establish a connection to covariance estimation in irregular/sparse functional data analysis. We introduce Hermitian covariance smoothing and show how to employ this extension of existing covariance estimation methods for obtaining an estimator of the (in)elastic full Procrustes mean, also in the sparse case not yet covered by existing (intrinsic) elastic shape means. For this, we provide different groundwork results which are also of independent interest: we characterize (the decomposition of) the covariance structure of rotation-invariant bivariate stochastic processes using complex representations, and we identify sampling schemes that allow for exact observation of derivatives / SRV transforms of sparsely sampled curves. We demonstrate the performance of the approach in a phonetic study on tongue shapes and in different realistic simulation settings, inter alia based on handwriting data.