论文标题

$ \ mathrm {gl}(2)$的强度多样性的改进

Refinements of strong multiplicity one for $\mathrm{GL}(2)$

论文作者

Wong, Peng-Jie

论文摘要

对于独特的单一cuspidal自动形式表示$π_1$和$π_2$,$ \ mathrm {gl}(2)$在数字$ f $上以及任何$α\ in \ bbb {r} $中的任何$α\,让$ \ mathcal { $λ_{π_1}(v)\ neq e^{iα}λ_{π_2}(v)$,其中$λ_{π_i}(v)$是$π_i$的傅立叶系数。在本文中,我们表明$ \ MATHCAL {s}_α$的下部dirichlet密度至少为$ \ frac {1} {16} $。此外,如果$π_1$和$π_2$不是扭曲等效的,我们表明,$ \ Mathcal {s}_α$和$ \cap_α\ Mathcal {s} s}_α$的较低dirichlet密度至少至少是$ \ frac {2} $ \ frac $ \ frac} $ \ frac {1}。此外,对于非扭转等效的$π_1$和$π_2$,如果每个$π_i$都对应于一个非CM重量$ k_i \ ge 2 $的非CM新形式,并且带有琐碎的Nebentypus,我们会获得各种上限,以获取Primes $ p \ le X $ p \ le x $ p \ le x $ p \ lec)$λ_____________________________________1 λ_{π_2}(p)^2 $。这些目前的改进了Murty-Pujahari,Murty-Rajan,Ramakrishnan和Walji的作品。

For distinct unitary cuspidal automorphic representations $π_1$ and $π_2$ for $\mathrm{GL}(2)$ over a number field $F$ and any $α\in\Bbb{R}$, let $\mathcal{S}_α$ be the set of primes $v$ of $F$ for which $λ_{π_1}(v)\neq e^{iα} λ_{π_2}(v)$, where $λ_{π_i}(v)$ is the Fourier coefficient of $π_i$ at $v$. In this article, we show that the lower Dirichlet density of $\mathcal{S}_α$ is at least $\frac{1}{16}$. Moreover, if $π_1$ and $π_2$ are not twist-equivalent, we show that the lower Dirichlet densities of $\mathcal{S}_α$ and $ \cap_α\mathcal{S}_α$ are at least $\frac{2}{13}$ and $\frac{1}{11}$, respectively. Furthermore, for non-twist-equivalent $π_1$ and $π_2$, if each $π_i$ corresponds to a non-CM newform of weight $k_i\ge 2$ and with trivial nebentypus, we obtain various upper bounds for the number of primes $p\le x$ such that $λ_{π_1}(p)^2 = λ_{π_2}(p)^2$. These present refinements of the works of Murty-Pujahari, Murty-Rajan, Ramakrishnan, and Walji.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源