论文标题
能源边界智能山脉的关键问题:光学,磁铁和辐射
Critical problems of energy frontier Muon Colliders: optics, magnets and radiation
论文作者
论文摘要
这份白皮书汇集了我们先前对MUON对撞机(MC)的研究,并提出了6 TEV MC光学元件的设计概念,超导(SC)磁铁以及对保护系统的初步分析,以减少磁辐射负载以及检测器中的粒子背景。 SC磁铁和检测器保护考虑因素对晶格选择施加了严格的限制,因此对撞机的设计,磁铁和机器探测器界面(MDI)的设计紧密相互交织。作为第一个近似值,我们使用beta-star = 3 mm的相互作用区域(IR)设计(IR)设计,而对于弧线,我们重新缩放了3 TEV MC的电弧细胞设计。传统的cos-theta线圈几何形状和NB3SN超导体用于提供野外图,以分析和优化弧晶格和IR设计,以及对梁动力学和磁铁保护的研究。将需要线圈中的应力管理,以避免脆性SC线圈的大量降解甚至损坏。在假定的IR设计中,靠近相互作用点(IP)的偶极子和每个IR(以保护磁体)中的辅助掩码有助于将检测器中的背景粒子通量减少一个实质因素。从IP的6至600厘米区域中的钨喷嘴,在检测器电磁磁场的辅助下,捕获大多数衰减电子以及IP产生的大多数不相干的电子质子对。通过在MDI区域中精致的钨,铁,混凝土和硼的聚乙烯屏蔽,可以实现背景负载的总减小,以多三个数量级以上。
This White Paper brings together our previous studies on a Muon Collider (MC) and presents a design concept of the 6 TeV MC optics, the superconducting (SC) magnets, and a preliminary analysis of the protection system to reduce magnet radiation loads as well as particle backgrounds in the detector. The SC magnets and detector protection considerations impose strict limitations on the lattice choice, hence the design of the collider optics, magnets and Machine Detector Interface (MDI) are closely intertwined. As a first approximation we use the Interaction Region (IR) design with beta-star=3 mm, whereas for the arcs we re-scale the arc cell design of the 3 TeV MC. Traditional cos-theta coil geometry and Nb3Sn superconductor were used to provide field maps for the analysis and optimization of the arc lattice and IR design, as well as for studies of beam dynamics and magnet protection against radiation. The stress management in the coil will be needed to avoid large degradation or even damage of the brittle SC coils. In the assumed IR designs, the dipoles close to the Interaction Point (IP) and tungsten masks in each IR (to protect magnets) help reducing background particle fluxes in the detector by a substantial factor. The tungsten nozzles in the 6 to 600 cm region from the IP, assisted by the detector solenoid field, trap most of the decay electrons created close to the IP as well as most of the incoherent electron-positron pairs generated in the IP. With sophisticated tungsten, iron, concrete and borated polyethylene shielding in the MDI region, the total reduction of background loads by more than three orders of magnitude can be achieved.