论文标题
压力设备:估算单个RGB图像的手压力
PressureVision: Estimating Hand Pressure from a Single RGB Image
论文作者
论文摘要
人们经常通过双手施加压力与周围环境互动。虽然可以通过在手和环境之间放置压力传感器来测量手动压力,但这样做可以改变接触力学,干扰人类触觉感知,需要昂贵的传感器,并且对大型环境的扩展很差。我们探索使用常规的RGB摄像头推断手动压力的可能性,从而使机器从未录制的手和表面对手动压力感知。中心洞察力是,通过手的施加压力会导致内容丰富的外观变化。手共有生物力学特性,从而产生相似的可观察现象,例如软组织变形,血液分布,姿势和铸造阴影。我们收集了36位参与者的视频,这些参与者的肤色多样,对仪器的平面表面施加压力。然后,我们训练了一个深层模型(压力visionnet),以从单个RGB图像中推断出压力图像。我们的模型会在训练数据外侵入给参与者的压力,并且表现优于基准。我们还表明,我们的模型的输出取决于手的外观,并在接触区域附近投射阴影。总体而言,我们的结果表明,可以使用以前未观察到的人手的出现来准确推断施加压力。数据,代码和模型可在线提供。
People often interact with their surroundings by applying pressure with their hands. While hand pressure can be measured by placing pressure sensors between the hand and the environment, doing so can alter contact mechanics, interfere with human tactile perception, require costly sensors, and scale poorly to large environments. We explore the possibility of using a conventional RGB camera to infer hand pressure, enabling machine perception of hand pressure from uninstrumented hands and surfaces. The central insight is that the application of pressure by a hand results in informative appearance changes. Hands share biomechanical properties that result in similar observable phenomena, such as soft-tissue deformation, blood distribution, hand pose, and cast shadows. We collected videos of 36 participants with diverse skin tone applying pressure to an instrumented planar surface. We then trained a deep model (PressureVisionNet) to infer a pressure image from a single RGB image. Our model infers pressure for participants outside of the training data and outperforms baselines. We also show that the output of our model depends on the appearance of the hand and cast shadows near contact regions. Overall, our results suggest the appearance of a previously unobserved human hand can be used to accurately infer applied pressure. Data, code, and models are available online.