论文标题

Picard第一的光滑投射霍斯磷的特征

Characterizations of smooth projective horospherical varieties of Picard number one

论文作者

Hong, Jaehyun, Kim, Shin-young

论文摘要

让$ x $成为第一picard的光滑的投射halosphical种类。我们表明,如果Picard第一的未释放的投影歧管是Biholomormormormormormorphic到$ x $,则如果其在总体上的最小理性切线在总体上与$ x $相当。为了获得由于最小的理性切线而产生的几何结构的局部平坦度,我们应用了$ w $ - 正常的完整步骤延长的方法。我们计算了第二级的相关谎言代数共同学空间,并显示了以这种共同体学为纤维的载体束的全体形态截面的消失。

Let $X$ be a smooth projective horospherical variety of Picard number one. We show that a uniruled projective manifold of Picard number one is biholomorphic to $X$ if its variety of minimal rational tangents at a general point is projectively equivalent to that of $X$. To get a local flatness of the geometric structure arising from the variety of minimal rational tangents, we apply the methods of $W$-normal complete step prolongations. We compute the associated Lie algebra cohomology space of degree two and show the vanishing of holomorphic sections of the vector bundle having this cohomology space as a fiber.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源