论文标题

机械基塔夫链中拓扑边缘状态的二元性

Duality of Topological Edge States in a Mechanical Kitaev Chain

论文作者

Allein, Florian, Chaunsali, Rajesh, Anastasiadis, Adamantios, Frankel, Ian, Boechler, Nicholas, Diakonos, Fotios K., Theocharis, Georgios

论文摘要

我们从理论上研究并在实验上证明了具有非零化学势的基塔夫链机械类似物中拓扑边缘状态的存在。我们的系统是一个一维单体系统,涉及两个耦合的自由度,即弹性元素的横向位移和旋转。由于粒子孔对称性,拓扑非平凡的体积导致边缘状态在有限链的有限链中的出现。相比之下,拓扑琐碎的散装也导致有限链中边缘状态的出现,但具有自由边界。我们在系统中揭示了预测后者边缘状态存在的二元性。这种二元性涉及有限链子空间的ISO-spectrality,因此,具有拓扑散装散装地图的自由链到具有非平凡体积的固定链。最后,我们提供了系统可以表现出完全退化的间隙模式的条件,类似于Majorana零模式。这些发现表明,具有微调自由度的机械系统可以是肥沃的测试床,以探索主要物理学的复杂性。

We theoretically investigate and experimentally demonstrate the existence of topological edge states in a mechanical analog of the Kitaev chain with a non-zero chemical potential. Our system is a one-dimensional monomer system involving two coupled degrees of freedom, i.e., transverse displacement and rotation of elastic elements. Due to the particle-hole symmetry, a topologically nontrivial bulk leads to the emergence of edge states in a finite chain with fixed boundaries. In contrast, a topologically trivial bulk also leads to the emergence of edge states in a finite chain, but with free boundaries. We unravel a duality in our system that predicts the existence of the latter edge states. This duality involves the iso-spectrality of a subspace for finite chains, and as a consequence, a free chain with topologically trivial bulk maps to a fixed chain with a nontrivial bulk. Lastly, we provide the conditions under which the system can exhibit perfectly degenerate in-gap modes, akin to Majorana zero modes. These findings suggest that mechanical systems with fine-tuned degrees of freedom can be fertile testbeds for exploring the intricacies of Majorana physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源