论文标题
饱和子集的亚添加性不稳定拓扑压力
Sub-additive unstable topological pressure on saturated subsets
论文作者
论文摘要
在本文中,我们继续对$ c^1 $平滑的部分平滑倍增性差异的次级压力进行调查。在假设几乎不稳定的几乎产品属性的假设下,我们表明,在给定的非空的紧凑型连接的一组不变措施的饱和集上的不稳定拓扑压力等于不稳定的度量熵的总和,相应的\ emph {lyapunov {lyapunov},在该{lyapunov}中,在所有无态度的衡量标准中,超过了无与伦比的衡量标准。此外,我们还表明,在饱和集上的不稳定拓扑容量压力与整个系统的不稳定拓扑压力一致。
In this paper, we continue our investigation on sub-additive pressures for $C^1$-smooth partially hyperbolic diffeomorphisms. Under the assumption of unstable almost product property, we show that the unstable Bowen topological pressure on the saturated set of a given non-empty compact connected set of invariant measures equals the infimum of the summation of unstable metric entropy and the corresponding \emph{Lyapunov exponent}, where the infimum is taken over all invariant measures inside the compact connected set above. Moreover, we also show that the unstable topological capacity pressure on the saturated sets above coincide with the unstable topological pressure of the whole system.