论文标题

ROVISQ:通过对基于深度学习的视频压缩的对抗性攻击降低视频服务质量

RoVISQ: Reduction of Video Service Quality via Adversarial Attacks on Deep Learning-based Video Compression

论文作者

Chang, Jung-Woo, Javaheripi, Mojan, Hidano, Seira, Koushanfar, Farinaz

论文摘要

视频压缩在视频流和分类系统中起着至关重要的作用,它通过以给定的带宽预算最大化最终用户体验质量(QOE)。在本文中,我们对基于深度学习的视频压缩和下游分类系统进行了首次系统研究。我们的攻击框架被称为Rovisq,操纵速率 - 延伸($ \ textit {r} $ - $ \ textit {d} $)视频压缩模型的关系以实现以下一个或两个目标:(1)增加网络带宽,((2)将视频质量降级为End-Ousers的视频质量。我们进一步为下游视频分类服务设计了针对目标和非目标攻击的新目标。最后,我们设计了一种输入不变的扰动,该扰动普遍破坏视频压缩和分类系统。与以前建议对视频分类的攻击不同,我们的对抗性扰动是第一个承受压缩的攻击。我们从经验上表明,Rovisq攻击对各种防御的弹性,即对抗性训练,视频DeNoising和JPEG压缩。我们在各种视频数据集上进行的广泛实验结果表明,Rovisq攻击峰值信噪比降低了5.6dB,比特率最高$ \ sim $ 2.4 $ \ times $,而在下游分类器上实现了90美元$ \%$ $ \%$的攻击成功率。我们的用户研究进一步证明了Rovisq攻击对用户QOE的影响。

Video compression plays a crucial role in video streaming and classification systems by maximizing the end-user quality of experience (QoE) at a given bandwidth budget. In this paper, we conduct the first systematic study for adversarial attacks on deep learning-based video compression and downstream classification systems. Our attack framework, dubbed RoVISQ, manipulates the Rate-Distortion ($\textit{R}$-$\textit{D}$) relationship of a video compression model to achieve one or both of the following goals: (1) increasing the network bandwidth, (2) degrading the video quality for end-users. We further devise new objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression. We empirically show the resilience of RoVISQ attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets show RoVISQ attacks deteriorate peak signal-to-noise ratio by up to 5.6dB and the bit-rate by up to $\sim$ 2.4$\times$ while achieving over 90$\%$ attack success rate on a downstream classifier. Our user study further demonstrates the effect of RoVISQ attacks on users' QoE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源