论文标题
单晶分子2D材料中的厚度依赖性自旋双向过渡
Thickness-dependent spin bistable transitions in single-crystalline molecular 2D material
论文作者
论文摘要
二维(2D)晶体的出现导致了许多科学的突破。常规的2D系统具有面内共价键和弱平面外范德尔式键。在这里,我们报告了一种由离散磁分子组成的新型2D材料,其中各向异性的Van-der-Waals相互作用将分子键入2D堆积。通过机械去角质,我们可以获得单晶分子单层,可以容易地整合到其他2D系统中。光谱法表明,几层分子保留了以散装形式观察到的温度引起的自旋 - 交叉切换,但显示出这些薄2D分子组件所特有的热滞后急剧增加。随着层数减小的旋转双重性的捕获可能是由降低尺寸中的域壁动力学产生的。我们的结果建立了分子固体,具有强烈的分子相互作用的各向异性,作为新型2D材料类别的前体,为通过底物和层间相互作用提供了新的可能性来控制功能。
The advent of two-dimensional (2D) crystals has led to numerous scientific breakthroughs. Conventional 2D systems have in-plane covalent bonds and a weak out-of-plane van-der-Waals bond. Here we report a new type of 2D material composed of discrete magnetic molecules, where anisotropic van-der-Waals interactions bond the molecules into a 2D packing. Through mechanical exfoliation, we can obtain single-crystalline molecular monolayers, which can be readily integrated into other 2D systems. Optical spectroscopy suggests the few-layered molecules preserve the temperature-induced spin-crossover switching observed in the bulk form but show a drastic increase in thermal hysteresis unique to these thin 2D molecule assemblies. The trapping of spin bistability with decreasing layer number can arise from domain wall dynamics in reduced dimensions. Our results establish molecular solids with strong anisotropy of intermolecular interactions as precursors to a novel class of 2D materials, affording new possibilities to control functionalities through substrate and interlayer interactions.