论文标题

体育深度学习的六分渐变

Half-Inverse Gradients for Physical Deep Learning

论文作者

Schnell, Patrick, Holl, Philipp, Thuerey, Nils

论文摘要

深度学习中的最新作品表明,将可区分的物理模拟器集成到培训过程中可以大大提高结果的质量。尽管这种组合比监督的神经网络训练代表了更复杂的优化任务,但通常采用相同的基于梯度的优化器来最大程度地减少损失函数。但是,集成的物理求解器对梯度流有深远的影响,因为在大小和方向上操纵尺度是许多物理过程的固有特性。因此,梯度流通常是高度不平衡的,并创造了一个基于梯度的优化器的环境。在这项工作中,我们分析了物理和神经网络优化的特征,以得出一种不受这种现象的新方法。我们的方法基于雅各布的半对,并结合了经典网络和物理优化器的原理来解决合并的优化任务。与最新的神经网络优化器相比,我们的方法会更快地收敛并产生更好的解决方案,我们在涉及非线性振荡器的三个复杂学习问题,Schroedinger方程和泊松问题上都证明了这一点。

Recent works in deep learning have shown that integrating differentiable physics simulators into the training process can greatly improve the quality of results. Although this combination represents a more complex optimization task than supervised neural network training, the same gradient-based optimizers are typically employed to minimize the loss function. However, the integrated physics solvers have a profound effect on the gradient flow as manipulating scales in magnitude and direction is an inherent property of many physical processes. Consequently, the gradient flow is often highly unbalanced and creates an environment in which existing gradient-based optimizers perform poorly. In this work, we analyze the characteristics of both physical and neural network optimizations to derive a new method that does not suffer from this phenomenon. Our method is based on a half-inversion of the Jacobian and combines principles of both classical network and physics optimizers to solve the combined optimization task. Compared to state-of-the-art neural network optimizers, our method converges more quickly and yields better solutions, which we demonstrate on three complex learning problems involving nonlinear oscillators, the Schroedinger equation and the Poisson problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源