论文标题
贝叶斯低级矩阵完成,并带有双电影嵌入:事先分析和无调推断
Bayesian Low-rank Matrix Completion with Dual-graph Embedding: Prior Analysis and Tuning-free Inference
论文作者
论文摘要
最近,通过双段正则化的角度,基于低级矩阵完成的无监督学习的兴趣复兴,这显着改善了多学科机器学习任务的性能,例如推荐系统,基因型插图和图像插入。虽然双段正则化贡献了成功的主要部分,但计算昂贵的超参数调谐通常涉及。为了避免这样的缺点并提高完成性能,我们提出了一种新型的贝叶斯学习算法,该算法会自动学习与双重正规化相关的超参数,同时保证矩阵完成的低级别。值得注意的是,设计出一个小说的先验是为了促进矩阵的低级别并同时编码双电图信息,这比单圈对应物更具挑战性。然后探索所提出的先验和可能性函数之间的非平凡条件偶联性,以使有效算法在变化推理框架下得出。使用合成和现实世界数据集的广泛实验证明了针对各种数据分析任务的拟议学习算法的最先进性能。
Recently, there is a revival of interest in low-rank matrix completion-based unsupervised learning through the lens of dual-graph regularization, which has significantly improved the performance of multidisciplinary machine learning tasks such as recommendation systems, genotype imputation and image inpainting. While the dual-graph regularization contributes a major part of the success, computational costly hyper-parameter tunning is usually involved. To circumvent such a drawback and improve the completion performance, we propose a novel Bayesian learning algorithm that automatically learns the hyper-parameters associated with dual-graph regularization, and at the same time, guarantees the low-rankness of matrix completion. Notably, a novel prior is devised to promote the low-rankness of the matrix and encode the dual-graph information simultaneously, which is more challenging than the single-graph counterpart. A nontrivial conditional conjugacy between the proposed priors and likelihood function is then explored such that an efficient algorithm is derived under variational inference framework. Extensive experiments using synthetic and real-world datasets demonstrate the state-of-the-art performance of the proposed learning algorithm for various data analysis tasks.