论文标题

急性缺血性中风患者的多输入分割使用Skip Connection缓慢融合

Multi-input segmentation of damaged brain in acute ischemic stroke patients using slow fusion with skip connection

论文作者

Tomasetti, Luca, Khanmohammadi, Mahdieh, Engan, Kjersti, Høllesli, Liv Jorunn, Kurz, Kathinka Dæhli

论文摘要

时间是中风治疗过程中的基本因素。一种快速自动的方法,可以分割缺血区域有助于治疗决策。在今天的临床用途中,手动研究了一组由计算机断层扫描(CTP)图像产生的颜色编码的参数图,以决定治疗计划。我们提出了一种基于神经网络的自动方法,使用一组参数图,以分割受急性缺血性中风患者的两个缺血区域(核心和阴茎)。我们的模型基于具有多输入和缓慢融合的卷积卷积瓶颈结构。基于焦点TVERSKY索引的损失函数解决了数据不平衡问题。所提出的结构表明,有效的性能和结果与神经放射学家注释的地面真相相当。在大容器闭塞测试集上,半月将骰子系数为0.81,核心的骰子系数为0.52。完整的实现可在以下网址获得:https://git.io/jtfgb。

Time is a fundamental factor during stroke treatments. A fast, automatic approach that segments the ischemic regions helps treatment decisions. In clinical use today, a set of color-coded parametric maps generated from computed tomography perfusion (CTP) images are investigated manually to decide a treatment plan. We propose an automatic method based on a neural network using a set of parametric maps to segment the two ischemic regions (core and penumbra) in patients affected by acute ischemic stroke. Our model is based on a convolution-deconvolution bottleneck structure with multi-input and slow fusion. A loss function based on the focal Tversky index addresses the data imbalance issue. The proposed architecture demonstrates effective performance and results comparable to the ground truth annotated by neuroradiologists. A Dice coefficient of 0.81 for penumbra and 0.52 for core over the large vessel occlusion test set is achieved. The full implementation is available at: https://git.io/JtFGb.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源