论文标题
紧凑的尺度嵌入的速率 - 最佳稀疏近似
Rate-optimal sparse approximation of compact break-of-scale embeddings
论文作者
论文摘要
该论文涉及借用从解决方案理论到电子schrödinger方程的稀疏函数的稀疏近似[43]。我们使用双曲线小波引入相应的besov和triebel-lizorkin型新空间,特别涵盖具有主导混合平滑度的功能的能量范围近似。显式(非)自适应算法是得出的,可产生急剧依赖性的收敛速率。
The paper is concerned with the sparse approximation of functions having hybrid regularity borrowed from the theory of solutions to electronic Schrödinger equations due to Yserentant [43]. We use hyperbolic wavelets to introduce corresponding new spaces of Besov- and Triebel-Lizorkin-type to particularly cover the energy norm approximation of functions with dominating mixed smoothness. Explicit (non-)adaptive algorithms are derived that yield sharp dimension-independent rates of convergence.