论文标题

通过学习顶级对来揭示可靠的签名

Revealing Reliable Signatures by Learning Top-Rank Pairs

论文作者

Ji, Xiaotong, Zheng, Yan, Suehiro, Daiki, Uchida, Seiichi

论文摘要

签名验证是一项至关重要的实际文档分析任务,在机器学习和模式识别领域的研究人员不断研究。在确保签名绝对可靠性的特定情况下,诸如确认财务文件和法律文书的最重点。在这项工作中,我们提出了一种新方法,以学习与作者无关的离线签名验证任务的“顶级对”。通过此方案,可以最大化绝对可靠的签名数量。更确切地说,我们学习顶级对的方法旨在将正面样本与负样本相比,之后将它们与每项样品与真实的参考签名配对之后。在实验中,使用BHSIG-B和BHSIG-H数据集用于评估,在此过程中,所提出的模型在其上实现了压倒性的更好的POS@TOP(绝对顶部正面样本与所有正样本的比率),同时在曲线(AUC)下表现出令人鼓舞的表现和准确性。

Signature verification, as a crucial practical documentation analysis task, has been continuously studied by researchers in machine learning and pattern recognition fields. In specific scenarios like confirming financial documents and legal instruments, ensuring the absolute reliability of signatures is of top priority. In this work, we proposed a new method to learn "top-rank pairs" for writer-independent offline signature verification tasks. By this scheme, it is possible to maximize the number of absolutely reliable signatures. More precisely, our method to learn top-rank pairs aims at pushing positive samples beyond negative samples, after pairing each of them with a genuine reference signature. In the experiment, BHSig-B and BHSig-H datasets are used for evaluation, on which the proposed model achieves overwhelming better pos@top (the ratio of absolute top positive samples to all of the positive samples) while showing encouraging performance on both Area Under the Curve (AUC) and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源