论文标题

边缘结构附近X射线吸收的贝叶斯光谱向卷积区分高能量和低能结构域

Bayesian Spectral Deconvolution of X-Ray Absorption Near Edge Structure Discriminating High- and Low-Energy Domains

论文作者

Kashiwamura, Shuhei, Katakami, Shun, Yamagami, Ryo, Iwamitsu, Kazunori, Kumazoe, Hiroyuki, Nagata, Kenji, Okajima, Toshihiro, Akai, Ichiro, Okada, Masato

论文摘要

在本文中,我们提出了一个贝叶斯光谱反卷积,考虑到不同能量域中峰的性质。贝叶斯光谱反卷积将光谱数据回归到多个基本函数之和。常规方法使用平均处理所有峰的模型。然而,在X射线吸收附近的边缘结构(XANES)光谱中,峰的性能因能域而异,而XANES的特定能量结构域对于凝结物理学至关重要。我们提出了一个区分低能和高能结构域的模型。我们还提出了反映物理特性的先前分布。我们根据计算效率,估计准确性和模型证据比较常规和提出的模型。我们证明我们的方法有效地估算了重要能量领域中的过渡成分的数量,在这些域中,材料科学家专注于通过第一原理模拟来映射电子过渡分析。

In this paper, we propose a Bayesian spectral deconvolution considering the properties of peaks in different energy domains. Bayesian spectral deconvolution regresses spectral data into the sum of multiple basis functions. Conventional methods use a model that treats all peaks equally. However, in X-ray absorption near edge structure (XANES) spectra, the properties of the peaks differ depending on the energy domain, and the specific energy domain of XANES is essential in condensed matter physics. We propose a model that discriminates between the low- and high-energy domains. We also propose a prior distribution that reflects the physical properties. We compare the conventional and proposed models in terms of computational efficiency, estimation accuracy, and model evidence. We demonstrate that our method effectively estimates the number of transition components in the important energy domain, on which the material scientists focus for mapping the electronic transition analysis by first-principles simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源