论文标题

使用诗歌朗诵的声学分析来鉴定低主题构音障碍

Identification of Hypokinetic Dysarthria Using Acoustic Analysis of Poem Recitation

论文作者

Mucha, Jan, Galaz, Zoltan, Mekyska, Jiri, Kiska, Tomas, Zvoncak, Vojtech, Smekal, Zdenek, Eliasova, Ilona, Mrackova, Martina, Kostalova, Milena, Rektorova, Irena, Faundez-Zanuy, Marcos, Alonso-Hernandez, Jesus B.

论文摘要

多达90%的帕金森氏病(PD)患者患有肌腱障碍(HD)。在这项工作中,我们分析了常规语音特征的力量,量化了从专业诗歌朗诵任务中提取的不精确的发音,发病障碍,语音失调和语音质量恶化,以区分违反律师和健康的言语。为此,检查了152名演讲者(53位健康的扬声器,99名PD患者)。仅观察到言语特征与说话者的临床状况之间的较轻相关性。在单变量分类分析的情况下,达到了62.63%(不精确的表达),61.62%(发病障碍),71.72%(语音失调)和59.60%(语音质量降低)。多元分类分析改善了分类性能。仅使用两种描述HD中描述不精确的表达和语音质量恶化的功能的敏感性为83.42%。我们展示了所选语音特征的有希望的潜力,尤其是使用诗歌朗诵任务来量化和识别PD中的HD。

Up to 90 % of patients with Parkinson's disease (PD) suffer from hypokinetic dysarthria (HD). In this work, we analysed the power of conventional speech features quantifying imprecise articulation, dysprosody, speech dysfluency and speech quality deterioration extracted from a specialized poem recitation task to discriminate dysarthric and healthy speech. For this purpose, 152 speakers (53 healthy speakers, 99 PD patients) were examined. Only mildly strong correlation between speech features and clinical status of the speakers was observed. In the case of univariate classification analysis, sensitivity of 62.63% (imprecise articulation), 61.62% (dysprosody), 71.72% (speech dysfluency) and 59.60% (speech quality deterioration) was achieved. Multivariate classification analysis improved the classification performance. Sensitivity of 83.42% using only two features describing imprecise articulation and speech quality deterioration in HD was achieved. We showed the promising potential of the selected speech features and especially the use of poem recitation task to quantify and identify HD in PD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源