论文标题
实际H-Selfadexhixhexhight矩阵的翻转正交共轭对称约旦的属性基础的存在
Existence of flipped orthogonal conjugate symmetric Jordan canonical bases for real H-selfadjoint matrices
论文作者
论文摘要
对于不确定的内部产品中的真实矩阵,有两种特殊的规范约旦形式,即(i)翻转正交(fo)和(ii)$γ$ -conjugate对称(CS)。这些是经典的约旦形式,其某些其他属性是因为它们是$ h $ selfdAdjoint的事实。在本文中,我们证明,对于任何真正的$ h $ - selfAdjoint矩阵,都有$γ$ -FOCS JORDAN形式,该形式同时翻转正交和$γ$ -conjugate对称。
For real matrices selfadjoint in an indefinite inner product there are two special canonical Jordan forms, that is (i) flipped orthogonal (FO) and (ii) $γ$-conjugate symmetric (CS). These are the classical Jordan forms with certain additional properties induced by the fact that they are $H$-selfadjoint. In this paper we prove that for any real $H$-selfadjoint matrix there is a $γ$-FOCS Jordan form that is simultaneously flipped orthogonal and $γ$-conjugate symmetric.