论文标题
DTA:使用可区分转化网络的物理伪装攻击
DTA: Physical Camouflage Attacks using Differentiable Transformation Network
论文作者
论文摘要
为了在物理世界中进行对抗攻击,许多研究提出了对抗性伪装,这是一种通过在3D对象表面上应用伪装模式来隐藏目标对象的方法。为了获得最佳的物理对抗伪装,先前的研究利用了所谓的神经渲染器,因为它支持了不同的性能。但是,由于缺乏对场景参数的控制,现有的神经渲染器不能完全代表各种现实世界转换,与旧的照片现实渲染器相比。在本文中,我们提出了可区分的转换攻击(DTA),这是一个在目标对象上生成强大的物理对抗模式的框架,以伪装具有广泛转换的对象检测模型。它利用了我们新颖的可区分变换网络(DTN),该网络在更改纹理时了解了渲染对象的预期变换,同时保留目标对象的原始属性。使用我们的攻击框架,对手可以通过提供可怜性来获得旧的照片现实渲染器的优势,包括各种物理世界转换和白盒访问的好处。我们的实验表明,我们的伪装3D车辆可以在光真实环境中成功逃避最新的对象检测模型(即,在虚幻发动机上的Carla)。此外,我们在缩放特斯拉模型3上的演示证明了我们方法对现实世界的适用性和转移性。
To perform adversarial attacks in the physical world, many studies have proposed adversarial camouflage, a method to hide a target object by applying camouflage patterns on 3D object surfaces. For obtaining optimal physical adversarial camouflage, previous studies have utilized the so-called neural renderer, as it supports differentiability. However, existing neural renderers cannot fully represent various real-world transformations due to a lack of control of scene parameters compared to the legacy photo-realistic renderers. In this paper, we propose the Differentiable Transformation Attack (DTA), a framework for generating a robust physical adversarial pattern on a target object to camouflage it against object detection models with a wide range of transformations. It utilizes our novel Differentiable Transformation Network (DTN), which learns the expected transformation of a rendered object when the texture is changed while preserving the original properties of the target object. Using our attack framework, an adversary can gain both the advantages of the legacy photo-realistic renderers including various physical-world transformations and the benefit of white-box access by offering differentiability. Our experiments show that our camouflaged 3D vehicles can successfully evade state-of-the-art object detection models in the photo-realistic environment (i.e., CARLA on Unreal Engine). Furthermore, our demonstration on a scaled Tesla Model 3 proves the applicability and transferability of our method to the real world.