论文标题

线性转换的总和

Sums of linear transformations

论文作者

Conlon, David, Lim, Jeck

论文摘要

我们表明,如果$ \ MATHCAL {L} _1 $和$ \ MATHCAL {L} _2 $是从$ \ Mathbb {Z}^d $到$ \ Mathbb {z}^d $的线性转换,那么,满足某些有限的条件,那么,对于任何有限的$ a $ a $ a $ a $ a $ a of of of $ a a $ a a $ a a $ \ a z} z} $ | \ MATHCAL {l} _1 A+\ MATHCAL {L} _2 A | \ GEQ \ left(| \ det(\ Mathcal {l} _1)|^{1/D}+| \ det(\ MATHCAL {\ MATHCAL {l} _2 _2)结果纠正并确认了bukh的猜想的两夏和情况,最好直至低阶术语,以获得$ \ Mathcal {l} _1 $和$ \ Mathcal {l} _2 _2 $的某些选择。作为一个应用程序,当$ a $是有限的实际数字,而$λ$是代数号码时,我们证明了$ | a +λ\ cdot a | $的下限。特别是,当$λ$的形式为$(p/q)^{1/d} $,对于某些$ p,q,q,in \ mathbb {n} $,每个人都尽可能小,我们表明$$ | a +λ\ cdot a | \ geq(p^{1/d} + q^{1/d})^d | a | -o(| a |)。$$这再次可能是较低阶段,并扩展了Krachun和Petrov的最新结果,该结果治疗了$λ= \ sqrt {2} $。

We show that if $\mathcal{L}_1$ and $\mathcal{L}_2$ are linear transformations from $\mathbb{Z}^d$ to $\mathbb{Z}^d$ satisfying certain mild conditions, then, for any finite subset $A$ of $\mathbb{Z}^d$, $$|\mathcal{L}_1 A+\mathcal{L}_2 A|\geq \left(|\det(\mathcal{L}_1)|^{1/d}+|\det(\mathcal{L}_2)|^{1/d}\right)^d|A|- o(|A|).$$ This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of $\mathcal{L}_1$ and $\mathcal{L}_2$. As an application, we prove a lower bound for $|A + λ\cdot A|$ when $A$ is a finite set of real numbers and $λ$ is an algebraic number. In particular, when $λ$ is of the form $(p/q)^{1/d}$ for some $p, q, d \in \mathbb{N}$, each taken as small as possible for such a representation, we show that $$|A + λ\cdot A| \geq (p^{1/d} + q^{1/d})^d |A| - o(|A|).$$ This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case $λ= \sqrt{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源