论文标题

适用于消费级可穿戴设备的不依赖主题的压力检测模型

An Improved Subject-Independent Stress Detection Model Applied to Consumer-grade Wearable Devices

论文作者

Ninh, Van-Tu, Nguyen, Manh-Duy, Smyth, Sinéad, Tran, Minh-Triet, Healy, Graham, Nguyen, Binh T., Gurrin, Cathal

论文摘要

压力是一个复杂的问题,对人类日常表现产生了广泛的身体和心理影响。具体而言,急性压力检测已成为情境人类理解中的宝贵应用。训练压力检测模型的两种常见方法是依赖受试者和主体独立的训练方法。尽管事实证明,依赖受试者的训练方法是建立压力检测模型的最准确的方法,但独立的模型是一种更实用和成本效益的方法,因为它们允许在消费者级可穿戴设备中部署压力水平检测和管理系统,而无需为最终用户提供培训数据。为了提高与受试者无关的压力检测模型的性能,在本文中,我们使用简单的神经网络体系结构引入了与压力相关的生物信号处理管道,使用从多模式上下文感应源中提取的统计特征,包括电胚层活动(EDA),包括血液体积脉冲(BVP)和皮肤温度(ST)从消费层佩戴的佩戴式磨损设备(ST)捕获。使用我们提出的模型体系结构,我们比较了使用每个单独信号源的度量的压力检测模型与使用多个传感器源融合的模型之间的准确性。公开可用的WESAD数据集进行了广泛的实验表明,与最先进的模型相比,我们提出的模型的表现优于常规方法,并且在保持低标准偏差的同时,平均准确性得分高1.63%。我们的实验还表明,与仅单独使用一个传感器源相比,多个来源的特征会产生更准确的预测。

Stress is a complex issue with wide-ranging physical and psychological impacts on human daily performance. Specifically, acute stress detection is becoming a valuable application in contextual human understanding. Two common approaches to training a stress detection model are subject-dependent and subject-independent training methods. Although subject-dependent training methods have proven to be the most accurate approach to build stress detection models, subject-independent models are a more practical and cost-efficient method, as they allow for the deployment of stress level detection and management systems in consumer-grade wearable devices without requiring training data for the end-user. To improve the performance of subject-independent stress detection models, in this paper, we introduce a stress-related bio-signal processing pipeline with a simple neural network architecture using statistical features extracted from multimodal contextual sensing sources including Electrodermal Activity (EDA), Blood Volume Pulse (BVP), and Skin Temperature (ST) captured from a consumer-grade wearable device. Using our proposed model architecture, we compare the accuracy between stress detection models that use measures from each individual signal source, and one model employing the fusion of multiple sensor sources. Extensive experiments on the publicly available WESAD dataset demonstrate that our proposed model outperforms conventional methods as well as providing 1.63% higher mean accuracy score compared to the state-of-the-art model while maintaining a low standard deviation. Our experiments also show that combining features from multiple sources produce more accurate predictions than using only one sensor source individually.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源