论文标题
可开关的手性运输订购的Kagome Metal CSV $ _3 $ SB $ _5 $
Switchable chiral transport in charge-ordered Kagome metal CsV$_3$Sb$_5$
论文作者
论文摘要
当电导体与镜像不同时,出现在ACHIRAL金属中禁止的异常手性转运系数,例如非线性电响应,称为电子磁性磁性磁盘性向向性向向电视(EMCHA)。虽然手性运输签名是通过在没有反转中心的许多导体中允许的对称性的,但仅在存在与巡回电子的异常强烈的手性偶联时,仅在极少数情况下才能达到可观的水平。到目前为止,手性转运的观察限于原子位置强烈打破镜子对称性的材料。在这里,我们报告了质合对称分层的kagome金属CSV $ _3 $ sb $ _5 $中的手性传输,这是通过平面磁场下的第二次谐波生成观察到的。 EMCHA信号仅在低于$ t'\ sim $ 35 K的温度下变得很重要,深处在CSV $ _3 $ _3 $ sb $ _5 $($ t _ {\ mathrm {cdw}}} \ sim $ 94 K)内。这种温度依赖性揭示了由于推定的轨道环电流而导致的电子手性,单向电荷顺序和自发的时间交流对称性之间的直接对应关系。我们表明,手性是由平面外场组件设置的,并且可以通过更改场符号来诱导从左手传输的过渡。 CSV $ _3 $ SB $ _5 $是第一个可以通过小型磁场变化来控制和切换强力手性传输的材料,与结构性手性材料形成鲜明对比,这是其在手性电子中应用的先决条件。
When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magneto-chiral anisotropy (eMChA). While chiral transport signatures are by symmetry allowed in many conductors without a center of inversion, it reaches appreciable levels only in rare cases when an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centro-symmetric layered Kagome metal CsV$_3$Sb$_5$, observed via second harmonic generation under in-plane magnetic field. The eMChA signal becomes significant only at temperatures below $T'\sim$ 35 K, deep within the charge-ordered state of CsV$_3$Sb$_5$ ($T_{\mathrm{CDW}}\sim$ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order, and spontaneous time-reversal-symmetry breaking due to putative orbital loop currents. We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV$_3$Sb$_5$ is the first material in which strong chiral transport can be controlled and switched by small magnetic-field changes, in stark contrast to structurally chiral materials -- a prerequisite for their applications in chiral electronics.