论文标题

GAC:一种深入的加强学习模型,以实现未知社交网络中的用户激励

GAC: A Deep Reinforcement Learning Model Toward User Incentivization in Unknown Social Networks

论文作者

Wu, Shiqing, Li, Weihua, Bai, Quan

论文摘要

近年来,许多应用程序已经部署了激励机制来促进用户的关注和参与。大多数激励机制基于用户属性(例如偏好)确定特定的激励价值,而在许多现实世界中,此类信息不可用。同时,由于预算限制,意识到所有用户成功激励的激励可能具有挑战性。从这个角度来看,我们考虑利用社会影响来最大化激励结果。我们可以直接激励有影响力的用户影响更多用户,因此激励这些用户的成本可以降低。但是,确定社交网络中有影响力的用户需要有关用户影响力强度的完整信息,这在现实世界中不切实际。在这项研究中,我们提出了一个基于端到端的增强学习框架,称为几何参与者 - 批评者(GAC),以解决上述问题。提出的方法可以实现有效的激励分配,而无需对用户属性的先验知识。实验中已经采用了三个现实世界的社交网络数据集来评估GAC的性能。实验结果表明,GAC可以在未知的社交网络中学习和应用有效的激励分配政策,并超越现有的激励分配方法。

In recent years, many applications have deployed incentive mechanisms to promote users' attention and engagement. Most incentive mechanisms determine specific incentive values based on users' attributes (e.g., preferences), while such information is unavailable in many real-world applications. Meanwhile, due to budget restrictions, realizing successful incentivization for all users can be challenging to complete. In this light, we consider leveraging social influence to maximize the incentivization result. We can directly incentivize influential users to affect more users, so the cost of incentivizing these users can be decreased. However, identifying influential users in a social network requires complete information about influence strength among users, which is impractical to acquire in real-world situations. In this research, we propose an end-to-end reinforcement learning-based framework, called Geometric Actor-Critic (GAC), to tackle the abovementioned problem. The proposed approach can realize effective incentive allocation without having prior knowledge about users' attributes. Three real-world social network datasets have been adopted in the experiments to evaluate the performance of GAC. The experimental results indicate that GAC can learn and apply effective incentive allocation policies in unknown social networks and outperform existing incentive allocation approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源