论文标题

基本物理实体量子理论的框架

A framework for quantum theory of elementary physical entities

论文作者

Wang, Wen-ge

论文摘要

在本文中,提出了一个直接在量子地面上建立的统一框架,该框架是针对基本物理实体提出的,称为\ emph {modes}。该框架主要建立在五个基本假设上,这些假设宽松地具有以下内容。 (i)每种模式的状态空间由动量状态空间和一个旋转状态空间的直接产物给出,后者是$ sl(2,c)$组的某些表示空间(Lorentz组的覆盖组); (ii)模式的旋转状态具有层类型的结构,并且模式是费米子或骨的模式,具体取决于其螺旋性特性; (iii)有三个基本过程 - 自由进化,真空波动(出现或消失了一对具有完全相反物理特性的费米子模式),以及两个基本的相互作用过程(将两个典型模式变为一个Bosonic Mode,将其变化为一个Bosonic Mode和反向); (iv)真空波动立即发生; (v)时间演化运算符是由运算符构建的,这些操作员将基本过程的传入模式的状态空间映射到传出模式的空间。事实证明,时间演化运算符是自由模式状态的创建和an灭操作员构建的量子场的函数,其交互部分具有局部特征。例如,研究了模式的简单模型,并将其与标准模型(SM)的第一代部分进行了比较。关于电动相互作用,研究的模型具有时间演化算子,其主体正式与SM的主体正式相似。此外,它可以预测$ \ frac 13 $和$ \ frac 23 $的夸克式模式的电子更改,对颜色的自由度进行了解释,并且包含某些模式,就像暗物质一样。

A unified framework, which is directly established on the quantum ground, is proposed for elementary physical entities, called \emph{modes} in this paper. The framework is mainly built upon five basic assumptions, which loosely speaking have the following contents. (i) The state space of each mode is given by the direct product of a momentum-state space and a spinor-state space, the latter of which is certain representation space of the $SL(2,C)$ group (a covering group of the Lorentz group); (ii) spinor states of modes have a layer-type structure and modes are either fermionic or bosonic, depending on their helicity properties; (iii) there are three fundamental processes -- free evolution, vacuum fluctuation (emergence or vanishing of a pair of fermionic modes that possess exactly opposite physical properties), and two fundamental interaction processes (change of two fermionic modes into one bosonic mode and the reverse); (iv) vacuum fluctuation happens instantly; and (v) the time evolution operator is constructed from operators, which map state spaces of incoming modes of fundamental processes to those of outgoing modes. The time evolution operator turns out to be a function of quantum fields that are constructed from creation and annihilation operators for free-mode states, whose interaction part has a local feature. As an example, a simple model of modes is studied and is compared with the first-generation part of the standard model (SM). Concerning electroweak interactions, the studied model has a time evolution operator, whose main body is formally similar to that of the SM. Besides, it predicts $\frac 13$ and $\frac 23$ electronic changes for quark-type modes, gives an interpretation to the color degree of freedom, and contains certain modes that behave like dark matters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源