论文标题
使用对比不成对的翻译适应合成到真实的域的适应
Synthetic-to-Real Domain Adaptation using Contrastive Unpaired Translation
论文作者
论文摘要
深度学习模型在机器人技术中的有用性在很大程度上取决于培训数据的可用性。培训数据的手动注释通常是不可行的。合成数据是可行的替代方法,但遭受了域间隙。我们提出了一种多步方法,以获取训练数据而无需手动注释:从3D对象网格中,我们使用现代合成管道生成图像。我们利用一种最先进的图像到图像翻译方法来使合成图像适应真实域,以学习的方式最大程度地减少域间隙。翻译网络是从未配对的图像中训练的,即仅需要未经注销的真实图像。然后,生成和精制的图像可用于训练深度学习模型以完成特定任务。我们还建议和评估翻译方法的扩展,以进一步提高性能,例如基于补丁的培训,从而缩短了训练时间并增加了全球一致性。我们评估我们的方法并证明其在两个机器人数据集上的有效性。我们终于深入了解了学习的精炼操作。
The usefulness of deep learning models in robotics is largely dependent on the availability of training data. Manual annotation of training data is often infeasible. Synthetic data is a viable alternative, but suffers from domain gap. We propose a multi-step method to obtain training data without manual annotation effort: From 3D object meshes, we generate images using a modern synthesis pipeline. We utilize a state-of-the-art image-to-image translation method to adapt the synthetic images to the real domain, minimizing the domain gap in a learned manner. The translation network is trained from unpaired images, i.e. just requires an un-annotated collection of real images. The generated and refined images can then be used to train deep learning models for a particular task. We also propose and evaluate extensions to the translation method that further increase performance, such as patch-based training, which shortens training time and increases global consistency. We evaluate our method and demonstrate its effectiveness on two robotic datasets. We finally give insight into the learned refinement operations.