论文标题
在多重时空模型的大脑动力学中的社区排名
Ranking of Communities in Multiplex Spatiotemporal Models of Brain Dynamics
论文作者
论文摘要
作为一个相对较新的领域,网络神经科学倾向于专注于许多连续实验或长期记录以构建强大的大脑模型的大脑的骨料行为。这些模型的解释能力有限,解释大脑的动态状态变化,这是由于正常的大脑功能而自发发生的。此后,在神经影像学时间序列数据上训练的隐藏马尔可夫模型(HMM)是一种产生易于训练但难以完全参数或分析的动态模型的方法。我们提出将这些神经HMM的解释为多重大脑状态图模型,我们称为Markov Graph模型(HMGMS)。这种解释允许使用网络分析技术的完整曲目分析动态的大脑活动。此外,我们提出了一种基于最大熵原理在没有外部数据的情况下选择HMM超参数的一般方法,并使用它来选择多路复用模型中的层数。我们使用基于时空随机步行的程序来确定大脑区域的重要社区,以利用模型的基础马尔可夫结构来确定大脑区域的重要社区。我们对实际多主体FMRI数据的分析提供了新的结果,以证实大脑在休息时的模块化处理假设,并为动态大脑状态社区之间和内部功能重叠提供了新的证据。我们的分析管道提供了一种在新型行为或条件下表征大脑动态网络活动的方法。
As a relatively new field, network neuroscience has tended to focus on aggregate behaviours of the brain averaged over many successive experiments or over long recordings in order to construct robust brain models. These models are limited in their ability to explain dynamic state changes in the brain which occurs spontaneously as a result of normal brain function. Hidden Markov Models (HMMs) trained on neuroimaging time series data have since arisen as a method to produce dynamical models that are easy to train but can be difficult to fully parametrise or analyse. We propose an interpretation of these neural HMMs as multiplex brain state graph models we term Hidden Markov Graph Models (HMGMs). This interpretation allows for dynamic brain activity to be analysed using the full repertoire of network analysis techniques. Furthermore, we propose a general method for selecting HMM hyperparameters in the absence of external data, based on the principle of maximum entropy, and use this to select the number of layers in the multiplex model. We produce a new tool for determining important communities of brain regions using a spatiotemporal random walk-based procedure that takes advantage of the underlying Markov structure of the model. Our analysis of real multi-subject fMRI data provides new results that corroborate the modular processing hypothesis of the brain at rest as well as contributing new evidence of functional overlap between and within dynamic brain state communities. Our analysis pipeline provides a way to characterise dynamic network activity of the brain under novel behaviours or conditions.