论文标题
通过超球空间和重新平衡准确性损失的置信度校准,以检测意图检测
Confidence Calibration for Intent Detection via Hyperspherical Space and Rebalanced Accuracy-Uncertainty Loss
论文作者
论文摘要
数据驱动的方法在意图检测方面取得了显着的性能,这是理解用户查询的任务。尽管如此,对于过度自信的预测,它们还是有争议的。在某些情况下,用户不仅在乎准确性,而且还关心模型的信心。不幸的是,主流神经网络的校准较差,精度和信心之间存在很大的差距。为了处理这个定义为置信度校准的问题,我们建议使用超球形空间和重新平衡准确性不确定性损失的模型。具体而言,我们将标签矢量均匀地投射到超球形空间上,以生成一个致密的标签表示矩阵,该矩阵减轻了由于过度拟合的Sparce One-hot标签矩阵而导致过度的预测预测。此外,我们重新平衡了不同准确性和不确定性的样本,以更好地指导模型培训。开放数据集上的实验验证了我们的模型是否优于现有的校准方法,并在校准度量方面取得了重大改进。
Data-driven methods have achieved notable performance on intent detection, which is a task to comprehend user queries. Nonetheless, they are controversial for over-confident predictions. In some scenarios, users do not only care about the accuracy but also the confidence of model. Unfortunately, mainstream neural networks are poorly calibrated, with a large gap between accuracy and confidence. To handle this problem defined as confidence calibration, we propose a model using the hyperspherical space and rebalanced accuracy-uncertainty loss. Specifically, we project the label vector onto hyperspherical space uniformly to generate a dense label representation matrix, which mitigates over-confident predictions due to overfitting sparce one-hot label matrix. Besides, we rebalance samples of different accuracy and uncertainty to better guide model training. Experiments on the open datasets verify that our model outperforms the existing calibration methods and achieves a significant improvement on the calibration metric.