论文标题

高斯过程回归中的最大似然估计不足

Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed

论文作者

Karvonen, Toni, Oates, Chris J.

论文摘要

高斯流程回归基于机器学习和统计数据的无数学术和工业应用,并通常使用最大似然估计来为协方差内核选择适当的参数。但是,确定最大似然估计的情况仍然是一个开放的问题,即当回归模型的预测对数据的小扰动不敏感时。本文确定了最大似然估计器无法得到充分量的方案,因为相对于Hellinger距离,预测分布不是数据中的Lipschitz。这些故障情况发生在无噪声数据设置中,对于具有固定协方差函数的任何高斯过程,其长度尺寸参数是使用最大似然估计的。尽管最大似然估计的失败是高斯流程民俗的一部分,但这些严格的理论结果似乎是同类的第一个。这些负面结果的含义是,当使用最大似然估计来训练高斯过程模型时,可能需要在事后评估适当的性能。

Gaussian process regression underpins countless academic and industrial applications of machine learning and statistics, with maximum likelihood estimation routinely used to select appropriate parameters for the covariance kernel. However, it remains an open problem to establish the circumstances in which maximum likelihood estimation is well-posed, that is, when the predictions of the regression model are insensitive to small perturbations of the data. This article identifies scenarios where the maximum likelihood estimator fails to be well-posed, in that the predictive distributions are not Lipschitz in the data with respect to the Hellinger distance. These failure cases occur in the noiseless data setting, for any Gaussian process with a stationary covariance function whose lengthscale parameter is estimated using maximum likelihood. Although the failure of maximum likelihood estimation is part of Gaussian process folklore, these rigorous theoretical results appear to be the first of their kind. The implication of these negative results is that well-posedness may need to be assessed post-hoc, on a case-by-case basis, when maximum likelihood estimation is used to train a Gaussian process model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源