论文标题

DeepAD:现实世界中临床应用的阿尔茨海默氏病进展的强大深度学习模型

DeepAD: A Robust Deep Learning Model of Alzheimer's Disease Progression for Real-World Clinical Applications

论文作者

Hashemifar, Somaye, Iriondo, Claudia, Casey, Evan, Hejrati, Mohsen, Initiative, for Alzheimer's Disease Neuroimaging

论文摘要

预测患者未来轨迹的能力是迈向复杂疾病(例如阿尔茨海默氏病)(AD)的疗法的关键步骤。但是,开发用于预测疾病进展的大多数机器学习方法是单任务或单模式模型,这些模型不能直接用于我们的设置,涉及具有高维图像的多任务学习。此外,这些方法中的大多数都经过单个数据集(即同类)的培训,该数据集无法推广到其他队列。我们提出了一个新型的多模式多任务深度学习模型,以通过分析来自多个同类的纵向临床和神经影像数据来预测AD的进展。我们提出的模型将来自3D卷积神经网络的高维MRI特征与包括临床和人口统计学信息在内的其他数据模式相结合,以预测患者的未来轨迹。我们的模型采用对抗性损失来减轻研究特定的成像偏见,尤其是研究领域的变化。此外,采用清晰度感知的最小化(SAM)优化技术,以进一步改善模型的概括。为了评估和验证结果,对所提出的模型进行了训练和测试。我们的结果表明,1)我们的模型比基线模型产生显着改进,以及2)使用3D卷积神经网络提取的神经成像特征在应用于MRI衍生的体积特征时,模型优于相同的模型。

The ability to predict the future trajectory of a patient is a key step toward the development of therapeutics for complex diseases such as Alzheimer's disease (AD). However, most machine learning approaches developed for prediction of disease progression are either single-task or single-modality models, which can not be directly adopted to our setting involving multi-task learning with high dimensional images. Moreover, most of those approaches are trained on a single dataset (i.e. cohort), which can not be generalized to other cohorts. We propose a novel multimodal multi-task deep learning model to predict AD progression by analyzing longitudinal clinical and neuroimaging data from multiple cohorts. Our proposed model integrates high dimensional MRI features from a 3D convolutional neural network with other data modalities, including clinical and demographic information, to predict the future trajectory of patients. Our model employs an adversarial loss to alleviate the study-specific imaging bias, in particular the inter-study domain shifts. In addition, a Sharpness-Aware Minimization (SAM) optimization technique is applied to further improve model generalization. The proposed model is trained and tested on various datasets in order to evaluate and validate the results. Our results showed that 1) our model yields significant improvement over the baseline models, and 2) models using extracted neuroimaging features from 3D convolutional neural network outperform the same models when applied to MRI-derived volumetric features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源