论文标题

ZINTL材料家族中的磁性狄拉克和Weyl Fermions

Magnetically tunable Dirac and Weyl fermions in the Zintl materials family

论文作者

Sarkar, Anan Bari, Mardanya, Sougata, Huang, Shin-Ming, Ghosh, Barun, Huang, Cheng-Yi, Lin, Hsin, Bansil, Arun, Chang, Tay-Rong, Agarwal, Amit, Singh, Bahadur

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent classification efforts encompassing crystalline symmetries have revealed rich possibilities for solid-state systems to support a tapestry of exotic topological states. However, finding materials that realize such states remains a daunting challenge. Here we show how the interplay of topology, symmetry, and magnetism combined with doping and external electric and magnetic field controls can be used to drive the previously unreported SrIn$_2$As$_2$ materials family into a variety of topological phases. Our first-principles calculations and symmetry analysis reveal that SrIn$_2$As$_2$ is a dual topological insulator with $Z_2=(1;000)$ and mirror Chern number $C_M= -1$. Its isostructural and isovalent antiferromagnetic cousin EuIn$_2$As$_2$ is found to be an axion insulator with $Z_4= 2$. The broken time-reversal symmetry via Eu doping in Sr$_{1-x}$Eu$_x$In$_2$As$_2$ results in a higher-order or topological crystalline insulator state depending on the orientation of the magnetic easy axis. We also find that antiferromagnetic EuIn$_2$P$_2$ is a trivial insulator with $Z_4= 0$, and that it undergoes a magnetic field-driven transition to an ideal Weyl fermion or nodal fermion state with $Z_4= 1$ with applied magnetic field. Our study identifies Sr$_{1-x}$Eu$_x$In$_2$(As, P)$_2$ as a new tunable materials platform for investigating the physics and applications of Weyl and nodal fermions in the scaffolding of crystalline and axion insulator states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源