论文标题
部分可观测时空混沌系统的无模型预测
Homotopy transfer for QFT on non-compact manifold with boundary: a case study
论文作者
论文摘要
在这项工作中,我们报告了一个同源扰动计算,以在$ \ mathbb {r} _ {\ geqslant 0} $上构建拓扑量子力学的有效理论。这种计算可以视为Feynman图计算的概括。由此产生的有效理论适合衍生的BV代数结构,该结构概括了BV量化。此外,我们的构建可能是称为“边界传输”过程的最简单示例,这可能有助于研究散装的对应关系。
In this work we report a homological perturbation calculation to construct effective theories of topological quantum mechanics on $\mathbb{R}_{\geqslant 0}$. Such calculation can be regarded as a generalization of Feynman graph computation. The resulting effective theories fit into derived BV algebra structure, which generalizes BV quantization. Besides, our construction may serve as the simplest example of a process called "boundary transfer", which may help study bulk-boundary correspondence.