论文标题

从高级Ligo-Virgo和贝叶斯波算法中重建来自核心折叠超新星的重力波信号的前景

Prospects for reconstructing the gravitational-wave signals from core-collapse supernovae with Advanced LIGO-Virgo and the BayesWave algorithm

论文作者

Raza, Nayyer, McIver, Jess, Dálya, Gergely, Raffai, Peter

论文摘要

我们目前对核心爆发超新星爆炸机制的理解是不完整的,具有多个可行的模型,用于如何将初始冲击波充满电,从而导致成功的爆炸。在恒星核心爆发后的最初几秒钟发出的重力波信号的检测将为此过程提供独特而关键的见解。由于预计高级Ligo和高级处女座检测器将很快接近其设计敏感性,因此我们可以从银河系中的超新星中检测到该信号。在这种情况下,我们研究了贝叶斯波算法如何从模拟的高级检测器噪声中恢复从核心折叠超新星模型中的重力波信号,并优化其准确地重建信号波形的能力。我们发现,贝叶斯波可以自信地从高级Ligo-Virgo中的一系列超新星爆炸模型中重建信号,以获得网络信号 - 噪声比率$ \ gtrsim 30 $,达到$ \ sim 90 $ \%$ $ \%$的最大重建精度,snr $ \ sim $ \ sim \ sim \ sim \ sim 100 $。对于不自信恢复的低SNR信号,我们的优化工作导致重建精度的提高高达$ 20-40 \%$,典型的$ \ sim 10 \%$。

Our current understanding of the core-collapse supernova explosion mechanism is incomplete, with multiple viable models for how the initial shock wave might be energized enough to lead to a successful explosion. Detection of a gravitational-wave signal emitted in the initial few seconds after stellar core-collapse would provide unique and crucial insight into this process. With the Advanced LIGO and Advanced Virgo detectors expected to approach their design sensitivities soon, we could potentially detect this signal from a supernova within our galaxy. In anticipation of such a scenario, we study how well the BayesWave algorithm can recover the gravitational-wave signal from core-collapse supernova models in simulated advanced detector noise, and optimize its ability to accurately reconstruct the signal waveforms. We find that BayesWave can confidently reconstruct the signal from a range of supernova explosion models in Advanced LIGO-Virgo for network signal-to-noise ratios $\gtrsim 30$, reaching maximum reconstruction accuracies of $\sim 90\%$ at SNR $\sim 100$. For low SNR signals that are not confidently recovered, our optimization efforts result in gains in reconstruction accuracy of up to $20-40\%$, with typical gains of $\sim 10\%$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源