论文标题

在GitHub上画汽车软件的景观

Painting the Landscape of Automotive Software in GitHub

论文作者

Kochanthara, Sangeeth, Dajsuren, Yanja, Cleophas, Loek, Brand, Mark van den

论文摘要

汽车行业已经从电力机械转变为软件密集型行业。当前的高端生产车辆包含超过现代飞机,大型强子对撞机,Android OS和Facebook的前端软件的1亿+线条,以巨大的差距为代码。如今,据报道,包括苹果,谷歌,华为,百度和索尼在内的全球软件公司正在努力将其车辆带到路上。本文冒险进入开源的汽车软件景观,为这个多学科行业提供了悠久的封闭源开发历史。我们通过描述其特性和开发方式在GitHub上绘制汽车软件的景观。 该景观由15,000多名用户定义,从2010年到2021年,在12年内创建了约600个积极开发的汽车软件项目。这些项目范围从与车辆动态相关的软件范围内;固件和驱动器,用于LiDAR和相机等传感器;感知和运动控制的算法;完成以上整合的操作系统。该领域的发展是由行业和学术界带头的,三分之一的积极开发的汽车软件存储库由组织拥有。我们观察到沿多个维度的变化,包括从MATLAB到Python的首选语言,以及与传统汽车软件相比,感知和与决策相关的软件的流行。这项研究见证了开源的汽车软件繁荣时期,对未来的研究和实践有许多影响。

The automotive industry has transitioned from being an electro-mechanical to a software-intensive industry. A current high-end production vehicle contains 100 million+ lines of code surpassing modern airplanes, the Large Hadron Collider, the Android OS, and Facebook's front-end software, in code size by a huge margin. Today, software companies worldwide, including Apple, Google, Huawei, Baidu, and Sony are reportedly working to bring their vehicles to the road. This paper ventures into the automotive software landscape in open source, providing the first glimpse into this multi-disciplinary industry with a long history of closed source development. We paint the landscape of automotive software on GitHub by describing its characteristics and development styles. The landscape is defined by 15,000+ users contributing to ~600 actively-developed automotive software projects created in a span of 12 years from 2010 until 2021. These projects range from vehicle dynamics-related software; firmware and drivers for sensors like LiDAR and camera; algorithms for perception and motion control; to complete operating systems integrating the above. Developments in the field are spearheaded by industry and academia alike, with one in three actively developed automotive software repositories owned by an organization. We observe shifts along multiple dimensions, including preferred language from MATLAB to Python and prevalence of perception and decision-related software over traditional automotive software. This study witnesses the open-source automotive software boom in its infancy with many implications for future research and practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源