论文标题

使用深度学习的膝关节炎严重程度测量:一种具有多机构验证的公开算法,显示了放射科医生级的性能

Knee arthritis severity measurement using deep learning: a publicly available algorithm with a multi-institutional validation showing radiologist-level performance

论文作者

Gu, Hanxue, Li, Keyu, Colglazier, Roy J., Yang, Jichen, Lebhar, Michael, O'Donnell, Jonathan, Jiranek, William A., Mather, Richard C., French, Rob J., Said, Nicholas, Zhang, Jikai, Park, Christine, Mazurowski, Maciej A.

论文摘要

膝关节X射线上的膝关节骨关节炎(KOA)的评估是使用总膝关节置换术的中心标准。但是,该评估遭受了不精确的标准,并且读取器间的可变性非常高。对KOA严重程度的算法,自动评估可以通过提高其使用的适当性来改善膝盖替代程序的总体结果。 We propose a novel deep learning-based five-step algorithm to automatically grade KOA from posterior-anterior (PA) views of radiographs: (1) image preprocessing (2) localization of knees joints in the image using the YOLO v3-Tiny model, (3) initial assessment of the severity of osteoarthritis using a convolutional neural network-based classifier, (4) segmentation of the joints and关节空间缩小(JSN)和(5)的计算,JSN和初始评估的组合,以确定最终的Kellgren-LawRence(KL)分数。此外,通过显示用于进行评估的分割面具,我们的算法与典型的“黑匣子”深度学习分类器相比表现出更高的透明度。我们使用我们机构的两个公共数据集和一个数据集进行了全面的评估,并表明我们的算法达到了最先进的性能。此外,我们还从机构中的多个放射科医生那里收集了评分,并表明我们的算法在放射科医生层面上执行。 该软件已在https://github.com/maciejmazurowski/osteoarthisis-classification上公开提供。

The assessment of knee osteoarthritis (KOA) severity on knee X-rays is a central criteria for the use of total knee arthroplasty. However, this assessment suffers from imprecise standards and a remarkably high inter-reader variability. An algorithmic, automated assessment of KOA severity could improve overall outcomes of knee replacement procedures by increasing the appropriateness of its use. We propose a novel deep learning-based five-step algorithm to automatically grade KOA from posterior-anterior (PA) views of radiographs: (1) image preprocessing (2) localization of knees joints in the image using the YOLO v3-Tiny model, (3) initial assessment of the severity of osteoarthritis using a convolutional neural network-based classifier, (4) segmentation of the joints and calculation of the joint space narrowing (JSN), and (5), a combination of the JSN and the initial assessment to determine a final Kellgren-Lawrence (KL) score. Furthermore, by displaying the segmentation masks used to make the assessment, our algorithm demonstrates a higher degree of transparency compared to typical "black box" deep learning classifiers. We perform a comprehensive evaluation using two public datasets and one dataset from our institution, and show that our algorithm reaches state-of-the art performance. Moreover, we also collected ratings from multiple radiologists at our institution and showed that our algorithm performs at the radiologist level. The software has been made publicly available at https://github.com/MaciejMazurowski/osteoarthritis-classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源