论文标题
来自波动定理的量子算法:热状态制备
Quantum algorithms from fluctuation theorems: Thermal-state preparation
论文作者
论文摘要
波动定理提供了在热平衡中量子系统的属性与在非平衡过程中产生的工作分布之间的对应关系,该过程将两个量子系统与汉密尔顿人$ H_0 $和$ H_1 = H_1 = H_0+V $连接起来。在这些定理的基础上,我们提出了一种量子算法,以在反温度的$β\ ge 0 $上纯化$ h_1 $的热状态,从净化$ h_0 $的热状态开始。由某些单位的使用数给出的量子算法的复杂性是$ \ tilde {\ cal o}(e^{β{β(δ\!a- w_l)/2})$,其中$Δ\! $是$ H_1 $和$ H_0,$和$ W_L $之间的自由能差,是一个工作截止,取决于工作分布的属性和近似错误$ε> 0 $。如果非平衡过程是微不足道的,则这种复杂性在$β\ | v \ | $中指数为指数,其中$ \ | v \ | $是$ v $的频谱规范。这代表了对先前的量子算法的显着改进,这些量子算法在$β\ | h_1 \ | $中具有复杂性指数的状态,其中$ \ | v \ | \ | \ | \ ll \ | h_1 \ | $。 $ε$中复杂性的依赖性根据量子系统的结构而变化。通常,它可以以$ 1/ε$的指数为指数,但是如果$ h_0 $和$ h_1 $ commute,我们证明它是$ 1/ε$的sublinear,或$ 1/ε$的polyenmial,如果$ h_0 $和$ h_1 $是本地旋转系统。应用统一将系统脱离平衡的可能性使人们可以提高$ W_L $的价值并进一步提高复杂性。为此,我们分析了使用不同的非平衡统一过程制备横向场模型热状态的复杂性,并看到显着的复杂性改善。
Fluctuation theorems provide a correspondence between properties of quantum systems in thermal equilibrium and a work distribution arising in a non-equilibrium process that connects two quantum systems with Hamiltonians $H_0$ and $H_1=H_0+V$. Building upon these theorems, we present a quantum algorithm to prepare a purification of the thermal state of $H_1$ at inverse temperature $β\ge 0$ starting from a purification of the thermal state of $H_0$. The complexity of the quantum algorithm, given by the number of uses of certain unitaries, is $\tilde {\cal O}(e^{β(Δ\! A- w_l)/2})$, where $Δ\! A$ is the free-energy difference between $H_1$ and $H_0,$ and $w_l$ is a work cutoff that depends on the properties of the work distribution and the approximation error $ε>0$. If the non-equilibrium process is trivial, this complexity is exponential in $β\|V\|$, where $\|V\|$ is the spectral norm of $V$. This represents a significant improvement of prior quantum algorithms that have complexity exponential in $β\|H_1\|$ in the regime where $\|V\|\ll \|H_1\|$. The dependence of the complexity in $ε$ varies according to the structure of the quantum systems. It can be exponential in $1/ε$ in general, but we show it to be sublinear in $1/ε$ if $H_0$ and $H_1$ commute, or polynomial in $1/ε$ if $H_0$ and $H_1$ are local spin systems. The possibility of applying a unitary that drives the system out of equilibrium allows one to increase the value of $w_l$ and improve the complexity even further. To this end, we analyze the complexity for preparing the thermal state of the transverse field Ising model using different non-equilibrium unitary processes and see significant complexity improvements.