论文标题

Rosa Planar Rosa:一个Quasiperiodic替代离散飞机瓷砖的家族,$ 2N $ - 折旋转对称性

Planar Rosa : a family of quasiperiodic substitution discrete plane tilings with $2n$-fold rotational symmetry

论文作者

Kari, Jarkko, Lutfalla, Victor

论文摘要

我们提出了平面罗莎(Rosa),这是一个由$ 2N $倍的旋转对称性的菱形块家族,由原始替代产生,也是离散平面瓷砖,这意味着它们是作为较高维离散平面的投影获得的。离散平面条件是切割和项目条件的放松版本。我们还证明,Kari和Rissanen定义的具有$ 2N $折叠对称性的sub suba替换砖甚至无法满足较弱的离散平面条件。我们证明了所有$ n \ geq 4 $的结果。这完成了我们先前发布的$ n $奇数结果。

We present Planar Rosa, a family of rhombus tilings with a $2n$-fold rotational symmetry that are generated by a primitive substitution and that are also discrete plane tilings, meaning that they are obtained as a projection of a higher dimensional discrete plane. The discrete plane condition is a relaxed version of the cut-and-project condition. We also prove that the Sub Rosa substitution tilings with $2n$-fold rotational symmetry defined by Kari and Rissanen do not satisfy even the weaker discrete plane condition. We prove these results for all even $n\geq 4$. This completes our previously published results for odd values of $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源