论文标题

通过模拟模型在EMRIS中潮汐引起的非线性共振

Tidally-induced nonlinear resonances in EMRIs with an analogue model

论文作者

Bronicki, David, Cárdenas-Avendaño, Alejandro, Stein, Leo C.

论文摘要

未来空间的引力波观测液的重要目标之一是极端质量比灵感(EMRIS),其中长而准确的波形建模对于检测和表征是必需的。建模EMRI动力学需要考虑诸如外部潮汐场引起的效果,这可能会在共振时破坏并引起大量的逐渐消除性。在本文中,我们使用牛顿黑洞的牛顿类似物来研究外部潮汐场对动力学和重力波形的影响。我们已经开发了一个数值框架,该框架利用了背景系统的集成性来通过符号分裂积分器来发展,并计算近似引力波形来估计扰动影响动态的时间尺度。将这个时间尺度与在共振处的辐射反应下的特征时间进行比较,我们引入了一种工具,用于量化在对EMRI引力波进行建模时可能包括潮汐效应的状态。作为该框架的应用,我们对一个共振的动力学进行了详细的分析,以说明如何在相位中以不同的进入点可以产生不同的动态,以及如何估算潮汐效应可能成为主导的参数空间的界限。这样的边界将扩展为$ \ varepsilon \ gtrsim c \,q $,其中$ \ varepsilon $测量外部潮汐场的强度,$ q $是质量比,$ c $是一个数字,取决于共振和潮汐的形状。我们演示了如何使用我们的框架在我们的模型系统中使用我们的2:3径向到极频率共振的$ c $估算$ c $。该框架可以作为在完全相对论的情况下正确建模潮汐扰动的代理。

One of the important targets for the future space-based gravitational wave observatory LISA is extreme mass ratio inspirals (EMRIs), where long and accurate waveform modeling is necessary for detection and characterization. Modeling EMRI dynamics requires accounting for effects such as the ones induced by an external tidal field, which can break integrability at resonances and cause significant dephasing. In this paper, we use a Newtonian analogue of a Kerr black hole to study the effect of an external tidal field on the dynamics and the gravitational waveform. We have developed a numerical framework that takes advantage of the integrability of the background system to evolve it with a symplectic splitting integrator, and compute approximate gravitational waveforms to estimate the timescale over which the perturbation affects the dynamics. Comparing this timescale with the characteristic time under radiation reaction at resonance, we introduce a tool for quantifying the regime in which tidal effects might be included when modeling EMRI gravitational waves. As an application of this framework, we perform a detailed analysis of the dynamics at one resonance to show how different entry points into the resonance in phase-space can produce substantially different dynamics, and how one can estimate bounds for the parameter space where tidal effects may become dominant. Such bounds will scale as $\varepsilon \gtrsim C \, q$, where $\varepsilon$ measures the strength of the external tidal field, $q$ is the mass ratio, and $C$ is a number which depends on the resonance and the shape of the tide. We demonstrate how to estimate $C$ using our framework for the 2:3 radial to polar frequency resonance in our model system. This framework can serve as a proxy for proper modeling of the tidal perturbation in the fully relativistic case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源