论文标题
区分6D(1,0)SCFT:几何结构的扩展
Distinguishing 6d (1,0) SCFTs: an extension to the geometric construction
论文作者
论文摘要
我们为6d $(1,0)$ scfts的几何结构提供了新的扩展,该结构封装了具有相同全球对称性但不同光谱的希格斯分支结构。特别是,我们发现存在独特的6d $(1,0)$ scfts,似乎可以共享其张量分支描述,风味对称代数和中央费用。例如,对于$(\ mathfrak {so} _ {4K},\ mathfrak {so} _ {4k})$ conformal Matter的$(\ Mathfrak {so} _ {4K} _ {4K} _ {4K} _ {4K} _ {4K} _ {4k})的尼尔氏higgsing出现了;我们提出了一种方法来预测这两种理论的Higgs分支算子在哪个共形维度上通过使用HIGGS分支的手性环发电机来增强张量分支描述来不同。这些6d $(1,0)$ scfts的圆环压实产生至4D $ \ MATHCAL {n} = 2 $ scfts $ \ MATHCAL {S} $,而这种4D理论的Higgs分支是通过Hall-Little Wood Wood Index捕获的。我们确认,在其霍尔 - 小木指数的预测的保形维度中,所得的4D理论在光谱上确实有所不同。我们强调了张量分支描述中的这种歧义是如何出现的,甚至超出了$(\ Mathfrak {so} _ {4K},\ Mathfrak {so} _ {4K})$相格的$(Mathfrak {so} _ {4K})的含义(\ mathfrak {so} _ {4K})$,因此应该理解为6D $(1,1,0,0)$ SCFFT。
We provide a new extension to the geometric construction of 6d $(1,0)$ SCFTs that encapsulates Higgs branch structures with identical global symmetry but different spectra. In particular, we find that there exist distinct 6d $(1,0)$ SCFTs that may appear to share their tensor branch description, flavor symmetry algebras, and central charges. For example, such subtleties arise for the very even nilpotent Higgsing of $(\mathfrak{so}_{4k}, \mathfrak{so}_{4k})$ conformal matter; we propose a method to predict at which conformal dimension the Higgs branch operators of the two theories differ via augmenting the tensor branch description with the Higgs branch chiral ring generators of the building block theories. Torus compactifications of these 6d $(1,0)$ SCFTs give rise to 4d $\mathcal{N}=2$ SCFTs of class $\mathcal{S}$ and the Higgs branch of such 4d theories are captured via the Hall--Littlewood index. We confirm that the resulting 4d theories indeed differ in their spectra in the predicted conformal dimension from their Hall--Littlewood indices. We highlight how this ambiguity in the tensor branch description arises beyond the very even nilpotent Higgsing of $(\mathfrak{so}_{4k}, \mathfrak{so}_{4k})$ conformal matter, and hence should be understood for more general classes of 6d $(1,0)$ SCFTs.