论文标题
重建世界输入输出表的分层聚类和矩阵完成
Hierarchical Clustering and Matrix Completion for the Reconstruction of World Input-Output Tables
论文作者
论文摘要
世界投入输出(I/O)矩阵提供了跨国和跨国经济关系的网络。在I/O分析的背景下,国家统计局在数据收集中采用的方法学提出了及时获得可靠数据的问题,并且它重建了(一部分)特别有趣的I/O矩阵。在这项工作中,我们提出了一种将层次聚类和矩阵完成(MC)与套索样核定标的惩罚相结合的方法,以将部分未知的I/O矩阵的缺失条目归为缺失的条目。通过基于合成矩阵的模拟,我们研究了所提出的方法的有效性,以预测往年的数据和与国家相似的国家数据相关的当前数据的丢失值。为了显示我们方法的有用性,提供了一个基于世界输入输出数据库(WIOD)表的应用程序 - 提供了逐个行业I/O表的示例。还发现了WIOD和其他I/O表之间结构上的强烈相似性,这使得提出的方法易于推广。
World Input-Output (I/O) matrices provide the networks of within- and cross-country economic relations. In the context of I/O analysis, the methodology adopted by national statistical offices in data collection raises the issue of obtaining reliable data in a timely fashion and it makes the reconstruction of (part of) the I/O matrices of particular interest. In this work, we propose a method combining hierarchical clustering and Matrix Completion (MC) with a LASSO-like nuclear norm penalty, to impute missing entries of a partially unknown I/O matrix. Through simulations based on synthetic matrices we study the effectiveness of the proposed method to predict missing values from both previous years data and current data related to countries similar to the one for which current data are obscured. To show the usefulness of our method, an application based on World Input-Output Database (WIOD) tables - which are an example of industry-by-industry I/O tables - is provided. Strong similarities in structure between WIOD and other I/O tables are also found, which make the proposed approach easily generalizable to them.