论文标题

示例困惑

Example Perplexity

论文作者

Zhang, Nevin L., Xie, Weiyan, Lin, Zhi, Dong, Guanfang, Li, Xiao-Hui, Cao, Caleb Chen, Wang, Yunpeng

论文摘要

一些例子比其他例子更容易分类。深度神经网络(DNNS)也应该是如此。我们使用术语示例困惑性来指代示例的难度级别。在本文中,我们提出了一种衡量例子的困惑并研究哪些因素导致高例子困惑的方法。相关的代码和资源可在https://github.com/vaynexie/example-perplexity上获得。

Some examples are easier for humans to classify than others. The same should be true for deep neural networks (DNNs). We use the term example perplexity to refer to the level of difficulty of classifying an example. In this paper, we propose a method to measure the perplexity of an example and investigate what factors contribute to high example perplexity. The related codes and resources are available at https://github.com/vaynexie/Example-Perplexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源