论文标题

具有自适应局部人工粘度的物理信息神经网络

Physics-Informed Neural Networks with Adaptive Localized Artificial Viscosity

论文作者

Coutinho, E. J. R., Dall'Aqua, M., McClenny, L., Zhong, M., Braga-Neto, U., Gildin, E.

论文摘要

物理信息神经网络(PINN)是一种有前途的工具,已应用于由部分微分方程(PDE)描述的各种物理现象中。但是,已经观察到,Pinn很难在某些“僵硬”问题中训练,其中包括各种非线性双曲线PDE,它们在其溶液中显示冲击。最近的研究增加了PDE的扩散项,并手动调整了人工粘度(AV)值,以允许Pinns解决这些问题。在本文中,我们提出了三种解决此问题的方法,这些方法都不依赖于人工粘度值的先验定义。第一种方法通过参数化的AV映射或基于残差的AV映射来学习全局的AV值,而其他两个方法则学习围绕冲击的局部AV值。我们将提出的方法应用于Inviscid Burgers方程和Buckley-Leverett方程,后者是石油工程中的经典问题。结果表明,所提出的方法能够学习一个小的AV值和准确的冲击位置,并改善了非适应性全局AV替代方法的近似误差。

Physics-informed Neural Network (PINN) is a promising tool that has been applied in a variety of physical phenomena described by partial differential equations (PDE). However, it has been observed that PINNs are difficult to train in certain "stiff" problems, which include various nonlinear hyperbolic PDEs that display shocks in their solutions. Recent studies added a diffusion term to the PDE, and an artificial viscosity (AV) value was manually tuned to allow PINNs to solve these problems. In this paper, we propose three approaches to address this problem, none of which rely on an a priori definition of the artificial viscosity value. The first method learns a global AV value, whereas the other two learn localized AV values around the shocks, by means of a parametrized AV map or a residual-based AV map. We applied the proposed methods to the inviscid Burgers equation and the Buckley-Leverett equation, the latter being a classical problem in Petroleum Engineering. The results show that the proposed methods are able to learn both a small AV value and the accurate shock location and improve the approximation error over a nonadaptive global AV alternative method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源