论文标题

与离群值的环形络合物的学位 - 盘复合物

The Degree-Rips Complexes of an Annulus with Outliers

论文作者

Rolle, Alexander

论文摘要

在拓扑数据分析中,划分解是无参数,密度敏感的分叉的最可计算的。众所周知,这种结构对输入数据的小扰动稳定,但是对异常值的稳健性并不理解。在最近的工作中,Blumberg-Lesnick使用Prokhorov距离和同型交错证明了这一方向的结果。根据实验评估,他们认为更精致的方法是可取的,并提出了同源性推断的框架。在这些实验的启发下,我们考虑了一种概率度量,该概率度量是均匀的,其在环上高密度,并且在环内的圆盘上均匀密度均匀。我们使用该圆圈的越野河 - 盘复合物的ADAMASZEK-ADAMS计算,将此概率空间的程度-RIPS复合物计算为同型类型。这些程度 - 盘复合物是Blumberg-Lesnick实验的极限对象。我们认为,在这种情况下,同源性推断方法具有强大的解释力,并建议直接研究极限对象作为进一步工作的策略。

The degree-Rips bifiltration is the most computable of the parameter-free, density-sensitive bifiltrations in topological data analysis. It is known that this construction is stable to small perturbations of the input data, but its robustness to outliers is not well understood. In recent work, Blumberg-Lesnick prove a result in this direction using the Prokhorov distance and homotopy interleavings. Based on experimental evaluation, they argue that a more refined approach is desirable, and suggest the framework of homology inference. Motivated by these experiments, we consider a probability measure that is uniform with high density on an annulus, and uniform with low density on the disc inside the annulus. We compute the degree-Rips complexes of this probability space up to homotopy type, using the Adamaszek-Adams computation of the Vietoris-Rips complexes of the circle. These degree-Rips complexes are the limit objects for the Blumberg-Lesnick experiments. We argue that the homology inference approach has strong explanatory power in this case, and suggest studying the limit objects directly as a strategy for further work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源