论文标题
估计点过程的结构因子,并应用于超均匀性
On estimating the structure factor of a point process, with applications to hyperuniformity
论文作者
论文摘要
超均匀性是对大窗口中具有亚频差方差的固定点过程的研究。换句话说,计算落入给定较大区域的超明显点过程的点会产生小型蒙特卡洛的体积估计。超明显的点过程在统计物理学中引起了很多关注,无论是用于研究天然有组织结构和材料的合成。不幸的是,严格地证明一个过程是非常一致的,通常很困难。统计物理和化学方面的一种常见实践是使用一些样品来估计一种称为结构因子的光谱度量。它的衰变左右提供了超均匀性的诊断。不同的应用字段使用不同的估计器,并且重要的算法选择来自每个字段的知识。本文提供了对结构因子的已知或自然估计量的系统调查和推导。我们还利用这些估计量的一致性来贡献第一个渐近性有效的有效统计检验。我们在一组示例上基准所有估计器和超均匀度诊断。为了对结构因子和超均匀性系统和可重现进行研究,我们进一步提供了Python Toolbox struction_factor,其中包含我们讨论的所有估计器和工具。
Hyperuniformity is the study of stationary point processes with a sub-Poisson variance in a large window. In other words, counting the points of a hyperuniform point process that fall in a given large region yields a small-variance Monte Carlo estimation of the volume. Hyperuniform point processes have received a lot of attention in statistical physics, both for the investigation of natural organized structures and the synthesis of materials. Unfortunately, rigorously proving that a point process is hyperuniform is usually difficult. A common practice in statistical physics and chemistry is to use a few samples to estimate a spectral measure called the structure factor. Its decay around zero provides a diagnostic of hyperuniformity. Different applied fields use however different estimators, and important algorithmic choices proceed from each field's lore. This paper provides a systematic survey and derivation of known or otherwise natural estimators of the structure factor. We also leverage the consistency of these estimators to contribute the first asymptotically valid statistical test of hyperuniformity. We benchmark all estimators and hyperuniformity diagnostics on a set of examples. In an effort to make investigations of the structure factor and hyperuniformity systematic and reproducible, we further provide the Python toolbox structure_factor, containing all the estimators and tools that we discuss.