论文标题

电磁耦合的强烈奔跑和晶格QCD的电动混合角

The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD

论文作者

Cè, Marco, Gérardin, Antoine, von Hippel, Georg, Meyer, Harvey B., Miura, Kohtaroh, Ottnad, Konstantin, Risch, Andreas, José, Teseo San, Wilhelm, Jonas, Wittig, Hartmut

论文摘要

我们用$ n _ {\ mathrm {f}} = 2+1 $ $ \ m rathcal {o}(a)$改进的威尔逊·费米斯(Wilson Fermions),计算晶格QCD中电磁和弱耦合的耐料跑运行。使用矢量电流的两个不同的离散化,我们计算了夸克连接的且与核对的贡献,对hadroonic真空极化(HVP)函数$ \barπ^{γγ} $和$ \ \ \barπ^{γz} $量规场在晶格间距的四个值下,以及包括其物理值在内的几个值的值,用于推断结果到物理点。执行精确风味分解的能力使我们能够提出$ \ mathrm {su}(3)$ - 风味抑制的HVP函数$ \barπ^{08} $的最精确的确定,该确定能够进入$ \ sin^2θ_{\ sin^2θ_{\ sinrm {w}} $。我们对$ \ \barπ^{γγ} $,$ \barπ^{γz} $和$ \ \barπ^{08} $的结果是根据有理函数表示的,对于$ q^2 $的连续值$ q^2 $以下$ 7 \,\ 7 \,\ mathrm {gev}^2 $。我们观察到$Δα^{(5)} _ {\ Mathrm {hast}}}( - q^2)$的晶格结果之间的张力高达$ 3.5 $。但是,通过采用欧几里得分裂技术和扰动QCD,将我们的结果转换为$ z $ pele时,紧张局势会大大减轻,从而产生$δα^{(5)} _ {\ m atrm {不确定性。

We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with $N_{\mathrm{f}}=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarization (HVP) functions $\barΠ^{γγ}$ and $\barΠ^{γZ}$ for Euclidean squared momenta $Q^2\leq 7\,\mathrm{GeV}^2$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the $\mathrm{SU}(3)$-flavor-suppressed HVP function $\barΠ^{08}$ that enters the running of $\sin^2θ_{\mathrm{W}}$. Our results for $\barΠ^{γγ}$, $\barΠ^{γZ}$ and $\barΠ^{08}$ are presented in terms of rational functions for continuous values of $Q^2$ below $7 \,\mathrm{GeV}^2$. We observe a tension of up to $3.5$ standard deviation between our lattice results for $Δα^{(5)}_{\mathrm{had}}(-Q^2)$ and estimates based on the $R$-ratio for space-like momenta in the range $3$--$7\,\mathrm{GeV}^2$. The tension is, however, strongly diminished when translating our result to the $Z$ pole, by employing the Euclidean split technique and perturbative QCD, which yields $Δα^{(5)}_{\mathrm{had}}(M_Z^2)=0.027\,73(15)$ and agrees with results based on the $R$-ratio within the quoted uncertainties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源