论文标题

了解您的传感器 - 用于手术动作分类的模态研究

Know your sensORs -- A Modality Study For Surgical Action Classification

论文作者

Bastian, Lennart, Czempiel, Tobias, Heiliger, Christian, Karcz, Konrad, Eck, Ulrich, Busam, Benjamin, Navab, Nassir

论文摘要

手术手术室(OR)为自动化和优化提供了许多机会。来自OR的各种来源的视频越来越多。医学界试图利用这些丰富的数据来开发自动化方法,以提高介入的护理,降低成本并改善整体患者的结果。因此,来自或房间摄像机的现有数据集的大小或方式限制了,因此尚不清楚哪些传感器方式最适合于诸如识别视频外科手术动作之类的任务。这项研究表明,手术动作识别性能可能会根据所使用的图像方式而有所不同。我们对几种常用的传感器方式进行有条理的分析,并提出了两种改善分类性能的融合方法。这些分析是对18种腹腔镜程序的一组多视图RGB-D视频记录进行的。

The surgical operating room (OR) presents many opportunities for automation and optimization. Videos from various sources in the OR are becoming increasingly available. The medical community seeks to leverage this wealth of data to develop automated methods to advance interventional care, lower costs, and improve overall patient outcomes. Existing datasets from OR room cameras are thus far limited in size or modalities acquired, leaving it unclear which sensor modalities are best suited for tasks such as recognizing surgical action from videos. This study demonstrates that surgical action recognition performance can vary depending on the image modalities used. We perform a methodical analysis on several commonly available sensor modalities, presenting two fusion approaches that improve classification performance. The analyses are carried out on a set of multi-view RGB-D video recordings of 18 laparoscopic procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源